www.tutorzone.co.uk

Mark schemes

1	(a)	(i)	giant lattice		
			allow each carbon atom is joined to three others	1	
			atoms in graphene are covalently bonded		
			max. 2 marks if any reference to wrong type of bonding	1	
			and covalent bonds are strong or need a lot of energy to be broken allow difficult to break		
				1	
		(ii)	because graphene has delocalised electrons allow each carbon atom has one free electron		
				1	
			which can move <u>throughout the structure</u> do not accept just electrons can move.		
	(b)	boor	ause there are weak forces between molecules	1	
	(0)	Deud	allow no <u>bonds</u> between the layers		
			so layers / molecules can slip / slide.	1	
				1	[7]
2	(a)	(i)	high	1	
		(ii)	hundred		
	(b)	hard		1	
	(0)	naro		1	
	(c)	(i)	carbon	1	
		(ii)	four	1	
		(iii)	covalent	Ŧ	
		(1)	all	1	
		(iv)	an	1	[7]

(a)

layers

Page 3 of 21

5	(a)	because atoms / ions / particles in alloy are different (sizes) do not allow reference to molecules	www.tutorzone.co.uk
		ignore reference to compounds	1
		so layers distorted	
		(and layers / atoms / ions / particles) don't slide $$ or slide less easily	
		accept all marking points in a suitably labelled or annotated diagram	m 1
		if no other mark awarded accept an alloy is a mixture or contains different metals / elements for 1 mark	
			1
	(b)	giant structure or lattice or macromolecule	
		max 3 marks if incorrect bonding	1
		strong bonds (between carbon / atoms)	
			1
		covalent (bonds)	1
		each carbon / atom forms 4 bonds	
		accept tetrahedral	
		if no other marks awarded, allow carbon (atoms) for 1 mark	1
	(c)	reference to incorrect bonding = max 3	
		reference to 'weak covalent bonds' = max 2 allow correctly drawn diagram for first two marking points eg. (tangled) lines with no cross-links	
		chains or large molecules	
		ignore layers	
			1
		with intermolecular forces or forces between chains	
		allow bonds for forces accept no cross-links	
			1
		that are weak	
		must relate to 2 nd marking point	1
		and are easily overcome/ broken (when heated)	1
		accept molecules / chains can flow / move	
			1
			[11]
6	(a)	(i) C	
			1

Page 4 of 21

	(ii) C or D	www.tutorzone.co.uk
	(iii) A	1
(b)	covalent	1
(c)	layers	1
	can slide / move over each other accept are weakly bonded (owtte) allow no bonds between layers ignore slip / rub	1 [6]
(a)	 (i) ionic / molecules / metallic / (inter)molecular = max 2 because graphene / it has a giant structure / lattice / macromolecular accept <u>all / every / each</u> atom is <u>bonded to</u> 3 other atoms 	1

because in graphene / the bonds are strong **or** a lot of energy needed / hard to break the bonds

because graphene / it has covalent bonds / is covalent

(ii) there are delocalised / free electrons

because one (delocalised / free) electron <u>per atom</u> linked to first marking point accept because three <u>electrons per atom</u> used (in bonding) accept because one electron <u>per atom</u> not used (in bonding)

(b) opaque (owtte)

7

eg could not see through them

or layers slide or layers not aligned *ignore thick*

1

1

1

1

1

1

1

1

1

1

[5]

(a)	(i)	covalent	www.tu
		two different answers indicated gains 0 marks	1
	(ii)	carbon	1
		two different answers indicated gains 0 marks	1
	(iii)	3	

two different answers indicated gains **0** marks

(b) layers can slide / slip

because there are no bonds between layers accept because weak forces / bonds between layers or so (pieces of) graphite rubs / breaks off

or graphite left on the paper

9

8

(a) Graphite:

because the layers (of carbon atoms) in graphite can move / slide	
it = graphite	

this is because there are only weak intermolecular forces **or** weak forces between layers accept Van der Waals' forces allow no <u>covalent</u> bonds between layers

Diamond:

however, in diamond, each carbon atom is (strongly / covalently) bonded to 4 others allow diamond has three dimensional / tetrahedral structure

so no carbon / atoms able to move / slide allow so no layers to slide **or** so diamond is rigid

(b) because graphite has delocalised electrons / sea of electrons allow free / mobile / roaming electrons

which can carry charge / current **or** move through the structure

3

1

1

[7]

[4]

1	
1	
1	
1	

any	three	from:
-----	-------	-------

- giant structure / lattice / macromolecule
- covalent (bonds)
- bonds are (very) strong

 allow bonds difficult to break
 or takes a lot of energy to break bonds
- each atom / carbon joined to <u>four</u> others
 accept each atom / carbon forms <u>four</u> bonds

12

11

- (a) carbon
- (b) <u>layers</u>

[3]

have weak forces / attractions / bonds between them or are only held together weakly second mark must be linked to layers or can slide over each other or separate (1) 1 (C) covalent 1 [4] the diameter of the tube is very small (a) 1 (b) (i) three 1 (ii) covalent 1

bonds (iii)

13

[4]

1

2

(a) any **four** from:

14

max **3** marks if any reference made to covalent / ionic bonding / molecules or intermolecular forces **or** graphite / diamond **or** forces of attraction between electrons and then ignore throughout

- giant structure / lattice ignore layers
- positive ions
- sea of electrons **or** delocalised / free electrons *ignore electrons can move*
- awareness of outer shell / highest energy level electrons are involved
- (electrostatic) attractions / bonds between electrons and positive ions
- bonds / attractions (between atoms/ ions) are strong allow hard to break for strong ignore forces unqualified
- a lot of energy / heat is needed to break these bonds / attractions
 ignore high temperature
- (b) (i) that they are <u>very</u> small accept tiny / really small / a lot smaller /

accept tiny / really small / a <u>lot</u> smaller / any indication of very small eg microscopic, smaller than the eye can see

or

- 1–100 nanometres **or** a few (hundred) atoms ignore incorrect numerical values if very small is given
- (ii) any **2** from:
 - one (non-bonded) electron from each atom
 - delocalised / free electrons
 allow sea of electrons
 ignore electrons can move
 - electron carry / form / pass current / charge
 ignore carry electricity

[7]

15		5
----	--	---

(a)	carbon			
(b)	all		1	
(c)	covalent		1	
(0)			1	
(d)	four		1	
(e)	hard		1	
				[5]
(a)	2,4 (dra	wn as crosses) on shells		
()		accept dots / e / - etc.	1	
(b)	(i) ha	rd allow rigid / high melting point do not allow references to bonding ignore strong ignore unreactive ignore structure	1	
	(ii) an	y three from max 2 if ionic / metallic / molecule / intermolecular bonds or incorrect number of bonds		
	•	giant structure / lattice / macromolecular allow many bonds		
	•	covalent (bonds)		
	•	(covalent) bonds are strong accept needs lots of energy to break bonds (owtte)		
	•	(each) carbon / atom forms four bonds		
		or		
		(each) carbon / atom bonded to four other atoms	3	

(c) any three from:

max **2** if ionic / ions / metallic / molecule 'it' needs to be qualified

graphite

has delocalised / free electrons do **not** accept the electrons move unless qualified (around structure etc)

or

electrons that can move through / around the structure

• each carbon is joined to three other carbon atoms allow graphite has three bonds

or

one electron from each atom is free / delocalised

diamond

has no free / delocalised electrons
 do not accept the electrons do not move

or

no electrons that move around the structure

all the electrons are used for bonding
 allow diamond has 4 bonds

or

each carbon joined to four other carbon atoms

[8]

1

1

1

17

(a) reduce wear of metal ie don't get damaged **or** other sensible answer

or

stop / reduce <u>friction</u> accept stop metal heating up accept move more smoothly ignore make it slippery / rub more smoothly

or

prevent seizing accept can move freely

(b) (i) carbon

(ii) layers (of atoms)

can slide / slip over each other allow slip off

or

weak forces of attraction / weak bonds (between layers)
 allow no bonds
 accept there are weak forces of attraction for
 1 mark even when there is no reference to layers
 accept atoms slide over each other (for 1 mark)
 an answer which only states there are weak bonds would gain 0
 mark when there is no reference to layers
 weak covalent bonds = 0 marks

[4]

- **18** ^(a)
- any **two** from:
 - conducts electricity
 - soft
 - slippery
 - high melting point
 ignore hardwearing / does not stick
 apply list principle
 - 2 (b) (i) three covalent (ii) it is made of layers of atoms

www.tutorzone.co.uk

- five ideas from the following for one mark each
 - each carbon / atom joined / bonded to three other carbon / atoms
 or each carbon forms 3 bonds
 - in layers

19

- layers / atoms can slide over each other
- one electron on each carbon is not used for bonding
- electrons delocalised **or** electrons free
 allow 'sea' of electrons
- electrons carry the charge / current
- giant structure / lattice
- covalent (bonds)
- strong bonds or a lot of energy needed to break bonds
 - reference to ionic bonding = max 4

diagrams could be used:

- to show layered structure
- to show that each carbon is bonded to three other carbon atoms
- to show giant structure (at least 3 rings required)

[5]

20

(a)

all three lines correct gains **2** marks one or two correct gains **1** mark if there are more than 3 lines then lose mark for each extra line

(b)	(i) cov	valent	www.tutorzone.c	o.uk
	()		1	
	(ii) fou	r		
			1	
	(iii) ha	rd	1	
	(iv) thre	20		
	(17) 111		1	
	(v) sof	it		
			1	
(c)	carbon			
		accept C	1	
				[8]
(a)	electric o	current / electricity	1	
	plus one	a from:		
	• is p	bassed through ionic compound / substance / electrolyte		
	• pas	ssed through molten/aqueous <u>compound</u> / <u>substance</u>		
		must be linked to electricity		
		allow liquid compound / substance do not allow solution / liquid alone		
	• 631	using decomposition		
	Cat	accept split up / breakdown / breaking up owtte		
		ignore separated		
		accept elements are formed		
		ignore new substances form		
			1	
(b)	hydroger			
		accept H ₂		
		do not accept H / H ²	1	
			-	

(c) one electron from each atom

accept each carbon is bonded to three other carbon atoms leaving one (unbonded) electron owtte

is delocalised / free (to move)

must be linked to electrons answers of delocalised / free electrons only, gains **1** mark accept each carbon is bonded to three other carbon atoms leaving delocalised / free electrons = **2** marks **maximum 1** mark if graphite described as a metal / giant ionic lattice

www.tutorzone.co.uk

1

1

1

1

(a) $M_r (SiO_2) = 60$ if M_r incorrect ecf for max 2

22

 $60 \text{ g SiO}_2 \rightarrow 28 \text{ g Si}$

correct answer for 3 marks

2.14 g SiO₂ \rightarrow 1 g Si allow 2, 2.1, 2.14 (or anything rounding to 2.14), 2.16 or 2.2 a unit is not required but an incorrect unit loses the third mark

$$OR M_r (SiO_2) = 60 (1)$$

moles if silicon needed = $\frac{1}{28}$ = 0.0357 mass of SiO₂ needed = 0.0357 × 60 (1)

= 2.14 g (1)

allow 2, 2.1, 2.14 (or anything rounding to 2.14), 2.16 or 2.2

$$OR M_r (SiO_2) = 60 (1)$$

mass SiO₂ = 1 ×
$$\left(\frac{60}{28}\right)$$
 (1)
= 2.14 g (1)

allow 2, 2.1, 2.4 (or anything rounding to 2.14), 2.16 or 2.2

penalise incorrect symbols correctly balanced equation for **1** mark state symbols for **1** mark allow correct multiples / fractions

2

ignore inner shell electrons of silicon allow correct drawings without symbols must clearly indicate four shared pairs of electrons with one electron from each atom

Si H₃

accept H₃ Si **or** any correct formula with 1:3 ratio if in step 1 they get either of ratios incorrect they lose first 2 marks but can be ecf for 3rd and 4th mark evidence of mass / A_r **1** mark proportions of each **1** mark whole number ratio **1** mark correct formula **1** mark

(iv) **C**

accept c

1

(c) any **four** from:

23

- giant structure / macromolecule / lattice / giant molecule
 allow giant molecular / giant atomic structure
- each silicon atom joined to four other atoms
 (or diagram)
- covalent bonds
- bonds are strong or large amount of energy needed to break bonds accept hard to break bonds
 - large number of bonds to be <u>broken</u> mention of giant **ionic** structure **or** intermolecular forces **or** intermolecular bonds max **1** mark diamond **or** carbon discussion max **3** marks unless clearly linked to silicon

[15]

4

(a) made of layers
 of carbon atoms
 weak forces of attraction between layers (owtte) / weak
 vertical bonds i.e.
 candidate refers to the diagram
 layers can slide over each other
 layers peel off

each for 1 mark

 (b) because there are electrons which are free (to move) reason for free electrons / each carbon atom has 3 covalent bonds each for 1 mark to max 5

[5]

any **two** from

(covalent, bonds, atoms)

(a)

(b)

24

- large numbers of covalent bonds
 allow giant lattice / structure
- between <u>atoms</u>
 do not accept between molecules

Quality of written communication: All scientific words used correctly

(covalent) bonds strong
 accept need much energy to break

W X X

each carbon has 4 electrons

one shared pair

four shared pairs

[6]

1

1

1

2

1

2

0E
23

(a) $\underline{2}$ Na + Cl ₂ \rightarrow 2 NaCl	
---	--

allow 2 Na⁺	C⊢ for 1 mark
(allow Na +	$1/_2CP^2 \rightarrow Na \ CI)$

- (b) (i) idea that
 - it has strong (attractive) forces/bonds between ions / charged particles for 1 mark

(<u>not</u>'...it has a rigid structure'- this defines a solid or '...particles close together' – they are in a liquid)

- (ii) ideas that
 - there is increased vibration of ions / particles on heating
 - ions have sufficient energy to overcome attractive forces / to break out of the
 - rigid structure / to move about

(must be in terms of increased energy of particles lions) each for 1 mark

 (iii) • ions can go to electrodes / ions are free to move for 1 mark [do not credit 'ions carry charges']

(c) ideas that

- it has stronger attractive forces between atoms/particles (not 'ions')
- each carbon atom forms <u>covalent</u> bonds with neighbouring atoms
 each for 1 mark

[7]

(a) idea that

26

 copper has free electrons / electrons that move throughout the structure gains 1 mark

but

 in copper, electrons from the highest (occupied) energy level /outer shell, are free / can move throughout the structure gains 2 marks

2

3

(b) idea that

- in graphite, only three bonds are formed by each carbon atom
 for 1 mark
- one outer electron (per atom), free to move
 for 1 mark
- an electric current is a flow of (free) electrons*
 for 1 mark

(* this mark to be given in **either** (a) **or** (b) but not in both)

[5]