Mark schemes

(a) add excess copper carbonate (to dilute hydrochloric acid)

accept alternatives to excess, such as 'until no more reacts'

1

filter (to remove excess copper carbonate)

reject heat until dry

1

heat filtrate to evaporate some water **or** heat to point of crystallisation accept leave to evaporate or leave in evaporating basin

1

leave to cool (so crystals form)

until crystals form

1

must be in correct order to gain 4 marks

(b) $M_r \text{ CuCl}_2 = 134.5$

correct answer scores 4 marks

1

moles copper chloride = (mass / M_r = 11 / 134.5) = 0.0817843866

1

 $M_{\rm r}$ CuCO₃= 123.5

1

Mass CuCO₃ (=moles × M_2 = 0.08178 × 123.5) = 10.1(00)

1

accept 10.1 with no working shown for 4 marks

(c) $\frac{79.1}{100} \times 11.0$

or

 11.0×0.791

1

8.70 (g)

1

accept 8.70(g) with no working shown for 2 marks

(d) Total mass of reactants = 152.5

1

<u>134.5</u>

152.5

allow ecf from step 1

accept 0.00396 or 3.96×10^{-3} with no working shown for 2 marks

use a pipette / burette to measure the acid

(f)

		because it or	is more accurate volume than a measuring cylinder	www.tutorzone.co.u
		greater pre	ecision than a measuring cylinder	
		or use a gas	syringe to collect the gas	
		so it will no	ot dissolve in water	
		or	k with a divider	
		use a liasr	accept description of tube suspended inside flask	
		so no gas	escapes when bung removed	
	(51)	#la a a la a l		1
	(g)	tney snoul	d be collected because carbon dioxide is left in flask at end	1
		and it has	the same volume as the air collected / displaced	1
				1 [11]
3	(a)	because th	his lithium atom has	
		3 protons		1
		and 4 neut	trons	
				1
		mass num	ber is total of neutrons and protons	
			accept protons and neutrons have a mass of 1	
			accept number of neutrons = 7 - 3(protons)	
			ignore mass of electron is negligible	1
	(b)	grams		
			accept g	1
		¹² C		
			allow carbon-12 or C-12	
			ignore hydrogen or H	1

[8]

1

	(c)	any three from:	
		max 2 if no numbers given	
		numbers if given must be correct	
		both have 8 protons	
		accept same number of protons	
		18O has 10 neutrons	
		• 16O has 8 neutrons	
		accept different number of neutrons or ¹⁸ O has two more neutrons for 1 mark	
		both have 8 electrons.	
		accept same number of electrons	
			3
4	(a)	X:	
4		Fe ²⁺ / iron(II), SO ₄ ²⁻ / sulfate	
		allow iron(II) sulfate	
		or FeSO ₄	
			1
		Y:	
		Na+ / sodium, I- / iodide	
		allow sodium iodide	
		or Nal	1
		Z :	•
		Fe ³⁺ / iron(III), Br ⁻ / bromide	
		allow iron(III) bromide or FeBr ₃	
		correct identification of any two ions = one mark	

correct identification of any four ions = two marks

(b) any **five** from:

allow converse arguments

method 1

- weighing is accurate
- not all barium sulfate may be precipitated
- precipitate may be lost
- precipitate may not be dry
- takes longer
- requires energy

allow not all the barium hydroxide has reacted

method 2

5

- accurate
- works for low concentrations allow reliable / precise

[8]

(a) (i) lit splint **or** ignite the gas

(squeaky) pop / explosion

1

1

5

(ii) because it provides energy (for the reaction)

1

to break bonds (in the reactants) **or** so the particles collide successfully ignore reference to frequency or rate of collisions because it provides the activation energy gains **2** marks

1

(b) (i) 1.67(g)

allow 1.66-1.68

correct answer (to 3 significant figures) with or without working gains 3 marks

if answer incorrect allow up to 2 marks for the following steps:

$$24 \rightarrow 40$$

$$1.00 \rightarrow 40/24$$

or

 $moles\ magnesium = 1 / 24\ or\ 0.04(17)$

multiply by 40

allow ecf from incorrect ratio or incorrect number of moles

2

(ii) if correct answer from part (b)(i) used

allow ecf from part (b)(i)

89.8 or 90

if 1.82 g used

82.4 or 82

correct answer with or without working gains 2 marks if answer incorrect, allow the following for 1 mark: 1.50 / 1.67 (or their answer from part (b)(i)) if 1.82 g used: 1.50 / 1.82

(iii) any **one** from:

ignore measurement errors

- not all the magnesium reacted allow the reaction may be reversible
- some of the magnesium oxide / product may have been left in the tube or may have been lost ignore magnesium lost
- different / unexpected reaction
- magnesium not pure

1 [10]

1

1

1

(a) would melt

6

accept they have a low melting point allow lose their shape ignore would soften when hot ignore boiling point

(b) to speed up the reaction

accept can use a lower temperature accept less energy needed

(c) (i) mass spectrometer

allow mass spectroscopy

Page 7 of 14

	(ii)	any one from:	www.tutorzone.c	o.ui
		ignore reliable		
		ignore more precise		
		• accurate		
		• sensitive		
		rapid / quicker		
		small amount of sample	1	
(d)	any t v	wo from:		
		allow concentration		
	•	pressure		
	•	temperature		
	•	catalyst or initiator		
	•	solvent		
			2	[6]
(a)	coppe	r has delocalised electrons		
		accept copper has free electrons		
		ignore sea of electrons or mobile electrons	1	
	(alact	rons) which can move through the metal / structure	•	
	(GIGGI	allow (electrons) which can carry a charge through the metal /		
		structure		
(1.)	(1)	(M. F. Ol.) 400 F	1	
(b)	(i)	$(M_r \text{ FeCl}_3 =) 162.5$		
		correct answer with or without working gains 3 marks		
		can be credited from correct substitution in step 2		

or

2 (moles of) FeCl $_3$ = 325

or

 $112 \rightarrow 325$

$$\frac{11.20}{56} \times 162.5$$

allow ecf from step 1

accept $\frac{325}{112}$ ×

112 *11.2

= 32.5

accept 32.48

(ii) 74.8

accept 74.77 - 75 accept ecf from (b)(i) if there is no answer to part(i)

or

if candidate chooses not to use their answer then accept 86.79 - 87

[6]

1

1

8 (a) 1 / one

(ii)

(iii)

7

neutrons

1

(b) (i) protons

1

1

1

(c) (i) losing

(ii) a positive

(iii) electrostatic

(d) high melting points

strong bonds

	(e)	(i)	58.5	www.tutorzo	ne.co.uk
	(-)	()			1
		(ii)	mole		1
	(f)	very	small (particles) or <i>ignore tiny / small / smaller / microscopic etc.</i>		
		1-10	00nm in size or		
		(par	ticle with a) few hundred atoms		
					1 [12]
9	(a)	(i)	hydrochloric	1	
		(ii)	insoluble	1	
			filtration	1	
		(iii)	crystallisation	1	
	(b)	any	four from:		
			any reference to incorrect bonding = max 3		
		•	calcium atom reacts with 2 chlorine atoms		
		•	calcium atoms <u>lose</u> electrons accept calcium ion is formed		
		•	lose <u>two</u> electrons accept calcium has a 2+ charge / calcium ion has a 2+ charge allow Ca ²⁺		
		•	chlorine atoms gain electrons accept chloride ion formed		
		•	gain one electron		
			accept chlorine / chloride has a negative charge / is a negative ion is a negative particle	/	
			allow Cl ⁻		
			if no other marks awarded allow ionic bonding or complete outer shell for 1 mark		
				4	[8]

(a) because they are gases

ignore vapours / evaporate / (g) allow it is a gas

1

(b) (i) 80 / 79.5

correct answer with or without working = **2** marks ignore units if no answer **or** incorrect answer then evidence of 64 / 63.5 + 16 gains **1** mark

2

(ii) 80 / 79.87 / 79.9 / 79.375 / 79.38 / 79.4

correct answer with or without working = 2 marks if no answer **or** incorrect answer then

evidence of $\frac{64}{80}$ or $\frac{63.5}{79.5}$ (x100) gains 1 mark

accept (ecf)

$$\frac{64 ar 63.5}{answer(b)(i)}(\times 100) \ \textit{for 2 marks if correctly calculated}$$

if incorrectly calculated

$$\textit{evidence of } \frac{64 or 63.5}{answer(b)(i)} (\times 100)$$

gains 1 mark

2

(iii) 3.2

correct answer with or without working = 1 mark allow (ecf)

4 x ((b)(ii)/100) for 1 mark if correctly calculated

1

(c) (i) 3.3

accept 3.33......
$$(3\frac{1}{3} \text{ or } 3.3 \cdot \text{ or } 3.3^r)$$

1

(ii) measure to more decimal places

or use a more sensitive balance / apparatus

allow use smaller scale (division)

or use a smaller unit

ignore accurate / repeat

(iii) any two	o from:
---------------	---------

- ignore systematic / human / apparatus / zero / measurement / random / weighing / reading errors unless qualified
- different balances used or faulty balance ignore dirty apparatus
- reading / using the balance incorrectly or recording error accept incorrect weighing of copper / copper oxide
- spilling copper oxide / copper allow some copper left in tube
- copper oxide impure
 allow impure copper (produced)
- not all of the copper oxide was reduced / converted to copper or not enough / different amounts of methane used accept not all copper oxide (fully) reacted
- heated for different times
- <u>heat</u>ed at different temperatures
 accept Bunsen burner / flame at different temperatures
- some of the copper made is oxidised / forms copper oxide
- some of the copper oxide / copper blown out / escapes (from tube)
 ignore some copper oxide / copper lost
- some water still in the test tube

[10]

2

- (a) (i) straight line through the 'points' and extended to C $_8H_{18}$ do **not** accept multiple lines
 - (ii) 5500

11

range 5400 to 5600 accept ecf from their graph

1

```
(iii)
     it is a straight line graph
            allow directly proportional
            accept constant difference between (energy) values
            accept C<sub>5</sub>H<sub>12</sub> close to values on the graph
            or C_5H_{12} comes in middle of the graph
            ignore 'fits the pattern' unqualified
            ignore 'line of best fit'
            ignore 'positive correlation'
                                                                                             1
(iv)
      expected ranges for working are:
            accept correct numerical answer as evidence of working
      (5400 \text{ to } 5600) - (2800 \text{ to } 2900) = (2500 \text{ to } 2800)
      or
      their value from (a)(ii) – a value from 2800 to 2900
      or
      (5400 to 5600) / their (a)(ii) divided by 2
      or
      a value from 2800 to 2900 - 2
                                                                                             1
      no / not quite / almost / yes
             this mark is only awarded on evidence from their correct working
                                                                                             1
      incorrect / no or partially correct
(i)
            ignore references to hydrogen
                                                                                             1
      bio-ethanol produces least energy
            mark independently
      or
      bio-ethanol produces 29 kJ
                                                                                             1
```

(b)

(ii) ignore incorrect / correct

any **two** from:

- hydrogen produces <u>only</u> H₂O
 accept hydrogen does not produce harmful gases / CO₂ / SO₂
- coal produces SO₂
 allow coal causes acid rain / respiratory problems
- coal produces smoke allow coal causes global dimming
- both renewable <u>and</u> non-renewable fuels produce CO₂
 accept bio-ethanol <u>and</u> natural gas / coal produce CO₂ / global warming
- (both) the non-renewable fuels produce CO₂
 accept coal <u>and</u> natural gas produce CO₂ / global warming
- (both) renewable fuel <u>s</u> produce no smoke
 accept hydrogen <u>and</u> bio-ethanol do not produce smoke / global dimming
- (both) renewable fuel <u>s</u> produce no SO₂
 accept hydrogen <u>and</u> bio-ethanol
 do not produce SO₂ / acid rain

2

[9]