
Mark schemes

1

(a)

a) Statement Structure

more than one line drawn from a variable negates the mark

(b) Carbon

1

(c) It has delocalised electrons

1

(d) the atoms / particles / ions are different sizes do **not** accept molecules

1

so there are no rows / layers to slide accept the layers are disrupted

1

(e)
$$\frac{2}{27} \times 100$$

1

7.4%

1

1

allow 7.4% with no working shown for 2 marks

(f) Mixture

[11]

1

1

1

1

1

1

1

2

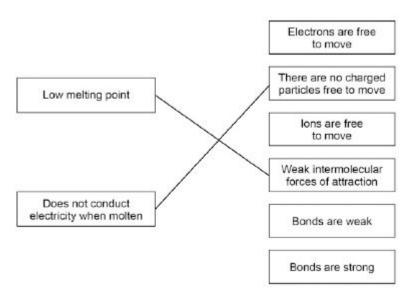
(a) electrons transferred from potassium to sulfur

two potassium atoms each lose one electron

forming K⁺ / 1+ ions

sulfur atoms gain 2 electrons

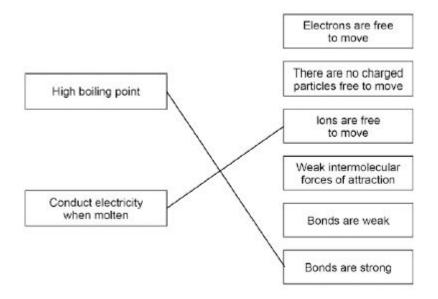
forming S²⁻ / 2- ions


- (b) there are no gaps / sticks between the potassium ions and sulfide ions
- (c) (two) shared pairs between H and S

rest correct - no additional hydrogen electrons and two non-bonding pairs on sulfur second mark dependent on first

(d) 342

allow **1** mark for evidence of $(2 \times 27) + 3[32 + (16 \times 4)]$


(e) Property Explanation of property

more than one line drawn from a variable negates the mark

(f) **Property**

Explanation of property

more than one line drawn from a variable negates the mark

[14]

2

1

1

- (a) line goes up before it goes down
 - energy given out correctly labelled

activation energy labelled correctly

1

(b) electrostatic force of attraction between shared pair of negatively charged electrons

and both positively charged nuclei

1

1

(c) bonds formed = 348 +4(412) + 2(276) = 2548 kJ / mol

bonds broken - bonds formed = 612 + 4(412) + (Br-Br) - 2548 = 95 kJ / mol

1

1

Alternative approach without using C-H bonds

For step 1 allow = 348 + 2(276) = 900 kJ / mol

Then for step 2 allow 612 + (Br-Br) - 900 = 95 kJ / mol

193 (kJ / mol)

accept (+)193 (kJ / mol) with no working shown for **3** marks -193(kJ / mol) scores **2** marks allow ecf from step 1 and step 2

(d) Level 3 (5–6 marks):

A detailed and coherent explanation is given, which demonstrates a broad understanding of the key scientific ideas. The response makes logical links between the points raised and uses sufficient examples to support these links. A conclusion is reached.

Level 2 (3-4 marks):

An explanation is given which demonstrates a reasonable understanding of the key scientific ideas. A conclusion may be reached but the logic used may not be clear or linked to bond energies.

Level 1 (1–2 marks):

Simple statements are made which demonstrate a basic understanding of some of the relevant ideas. The response may fail to make logical links between the points raised.

0 marks:

No relevant content.

Indicative content

Size and strength

- chlorine atoms have fewer electron energy levels / shells
- chlorine atoms form stronger bonds
- Cl–Cl bond stronger then Br–Br
- C–Cl bond stronger that C–Br

Energies required

- more energy required to break bonds with chlorine
- more energy given out when making bonds with chlorine
- overall energy change depends on sizes of energy changes

Conclusions

- if C–Cl bond changes more, then less exothermic
- if C–Cl bond changes more then more exothermic
- can't tell how overall energy change will differ as do not know which changes more.

6 [14]
(a) (i) C

1 (ii) B

1 (iii) A

(iv) D

	(b)	(i)	SO_2	www.tutorzone.	co.uk
	(3)	(-)		1	
		(ii)	shared	1	
		(iii)	covalent	1	[7]
5	(a)	(i)	neutrons		[7]
			this order only	1	
			electrons	1	
			protons	1	
		(ii)	box on the left ticked	1	
	(b)	(i)	effervescence / bubbling / fizzing / bubbles of gas		
			do not accept just gas alone	1	
			magnesium gets smaller / disappears		
			allow magnesium dissolves		
			allow gets hotter or steam produced		
			ignore references to magnesium moving and floating / sinking and incorrectly named gases.		
				1	

(ii) Marks awarded for this answer will be determined by the Quality of Communication (QC) as well as the standard of the scientific response. Examiners should also refer to the information in the Marking Guidance and apply a 'best-fit' approach to the marking.

0 marks

No relevant content

Level 1 (1-2 marks)

There are simple statements of some of the steps in a procedure for obtaining magnesium chloride.

Level 2 (3-4 marks)

There is a description of a laboratory procedure for obtaining magnesium chloride from dilute hydrochloric acid and magnesium.

The answer must include a way of ensuring the hydrochloric acid is fully reacted **or** a method of obtaining magnesium chloride crystals.

Level 3 (5-6 marks)

There is a well organised description of a laboratory procedure for obtaining magnesium chloride that can be followed by another person.

The answer must include a way of ensuring the hydrochloric acid is fully reacted **and** a method of obtaining magnesium chloride crystals.

examples of the points made in the response:

- hydrochloric acid in beaker (or similar)
- add small pieces of magnesium ribbon
- until magnesium is in excess or until no more effervescence occurs *
- filter using filter paper and funnel
- filter excess magnesium
- pour solution into evaporating basin / dish
- heat using Bunsen burner
- leave to crystallise / leave for water to evaporate / boil off water
- decant solution
- pat dry (using filter paper).

*Student may choose to use a named indicator until it turns a neutral colour, record the number of pieces of magnesium added then repeat without the indicator.

[12]

(a) because sulfur dioxide causes <u>acid rain</u>

6

which kills fish / aquatic life **or** dissolves / damages statues / stonework **or** kills / stunts growth of trees

if no other mark awarded then award 1 mark for sulfur dioxide is toxic or causes breathing difficulties.

1

- (b) (i) <u>electrons</u> are lost
 - (ii) $Cu^{2+} + 2e^{-} \rightarrow Cu$ allow $Cu^{2+} \rightarrow Cu - 2e^{-}$ ignore state symbols

1

(iii) copper sulfate

allow any ionic copper compound

1

(c) (lattice of) positive ions

1

delocalised electrons

accept sea of electrons

1

(electrostatic) attraction between the positive ions and the electrons

1

electrons can move through the metal / structure **or** can flow

allow electrons can carry charge through the metal / structure

if wrong bonding named or described or attraction between

oppositely charged ions then do not award M1 or M3 – MAX 2

1

(d) (copper compounds are absorbed / taken up by) plants allow crops

1

which are burned

1

the ash contains the copper compounds

do not award M3 if the ash contains copper (metal)

1	\sim	١
ı	ᆫ	,

/ A _r	55.6 / 63.5	16.4 / 56	28.0 / 32
moles	0.876	0.293	0.875
ratio	3	1	3
formula		Cu ₃ FeS ₃	

award **4** marks for Cu₃FeS₃ with some correct working award **3** marks for Cu₃FeS₃ with **no** working if the answer is not Cu₃FeS₃ award up to **3** marks for cu

if the answer is not Cu_3FeS_3 award up to ${\bf 3}$ marks for correct steps from the table apply ecf

if the student has inverted the fractions award **3** marks for an answer of CuFe₃S

[16]

7

(a) (i) the products are at a lower energy level than the reactants

accept products have less energy / less energy at the end than the beginning

1

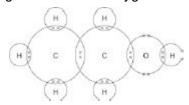
(ii) because a catalyst provides an alternative / different pathway / mechanism / reaction route

accept adsorption or 'increases concentration at the surface' ignore absorption

1

(that has) lower activation energy

allow weakens bonds allow idea of increased successful collisions. DO NOT ALLOW answers stating catalysts provide energy for M1 and M2


1

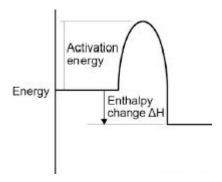
(b) one pair of electrons in each overlap (8 pairs in total)

allow any combination of dots, crosses or other symbols

1

the rest of the diagram correct with four non-bonding electrons on the oxygen giving a total of eight electrons in oxygen outer energy level.

gains 2 marks


(0)	(i) ±2(204 (1)	www.tutorzone.co.u
(c)	(i) ±30	024 (J) correct answer with or without working gains 3 marks	
		if the answer is incorrect, award up to 2 marks for the following	
		steps:	
		$ \Delta T = 14.4(^{\circ}C) $	
		• 50 x 4.2 x 14.4	
		allow ecf for incorrect ΔT	_
			3
	(ii) 0.0	15(2173913)	
		correct answer with or without working gains 3 marks	
		if answer is incorrect, allow 1 mark each for any of the following steps up to a max of 2.	
		• 0.70g	
		• M_r of ethanol = 46	
		• 0.70 / 46	
		allow ecf in final answer for arithmetical errors	2
			3
	(iii) ±19	98 720(J / mole)	
		$C(i) \div C(ii)$	
		allow ecf from (c)(i) and (c)(ii)	
		0.015 gives 201600	
		0.0152 gives 198947 0.01522 gives 198686	
		0.01322 gives 190000	1
(d)	(ac the n	nolecules get bigger or the number of carbon atoms increases) the	
(d)	•	ecular forces	
		allow intermolecular bonds	
			1
	(intermol	ecular forces) increase	
	`	allow more / stronger (intermolecular forces)	
			1
	and there	efore require more (heat) energy to overcome	
		breaking covalent bonds or unspecified bonds max 1 mark (M3)	
			1
			[15]
(a)	(i) Pro	oton	
			1
	(ii) Ne	utron	
			1
(b)	In order	of increasing atomic number	

	(c)	(i)	9	www.tutorzone.co.uk
	(0)	(-)		1
		(ii)	Gas	1
	(d)	(i)	gains (one) electron	1
			(to gain a) full outer energy level or noble gas configuration allow because it has seven outer electrons	1
		(ii)	add sodium hydroxide (solution) allow ammonia (solution) or ammonium hydroxide or any other soluble hydroxide or flame test	1
			(forms a) blue precipitate second mark dependent on suitable reagent being added allow blue-green / blue / green if flame test given	1 [9]
9	(a)	circl	e round any one (or more) of the covalent bonds any correct indication of the bond - the line between letters	1
	(b)	Metl	hane contains atoms of two elements, combined chemically	1

(c) (i) activation energy labelled from level of reagents to highest point of curve ignore arrowheads

1

enthalpy change labelled from reagents to products

arrowhead must go from reagents to products only

1

(ii) 2 O₂

1

2 H₂O

if not fully correct, award **1** mark for all formulae correct. ignore state symbols

1

(iii) carbon monoxide is made

1

this combines with the blood / haemoglobin ${f or}$ prevents oxygen being carried in the blood / round body ${f or}$ kills you ${f or}$ is toxic ${f or}$ poisonous

dependent on first marking point

1

(iv) energy is taken in / required to break bonds accept bond breaking is endothermic

1

energy is given out when bonds are made accept bond making is exothermic

1

the energy given out is greater than the energy taken in
this mark only awarded if both of previous marks awarded

```
www.tutorzone.co.uk
      (d)
            (i)
                  energy to break bonds = 1895
                        calculation with no explanation max = 2
                                                                                                        1
                  energy from making bonds = 1998
                                                                                                        1
                  1895 - 1998 (= -103)
                  energy to break bonds = 656
                  energy from making bonds = 759
                  656 - 759 (= -103)
                        allow:
                        bonds broken - bonds made =
                        413 + 243 - 327 - 432 = -103 for 3 marks.
                                                                                                        1
            (ii)
                  The C — Br bond is weaker than the C — CI bonc
                                                                                                        1
                                                                                                           [15]
            sodium loses (electron)
       (a)
10
                        sharing / covalent / metallic = max 2
                                                                                                        1
            chlorine gains (electron)
                                                                                                        1
             1 or an (electron)
                                                                                                        1
       (b)
            (i)
                  Have no overall electric charge
                                                                                                        1
             (ii)
                  Should iodine be added to salt?
                                                                                                        1
                  reason
                  any one from:
                        cannot be done by experiment
                        accept difficult to get / not enough evidence
                        based on opinion / view
                        allow must be done by survey
                        ethical or economic issue.
                                                                                                        1
       (c)
                  nitric (acid)
            (i)
                                                                                                        1
             (ii)
                  an alkali
                                                                                                        1
            (iii)
                  indicator
                        accept any named acid base indicator
```

	(d)	(i)	Crystallisation	www.tutorzone.co.uk
	(4)	(.,		1
		(ii)	fertiliser allow to help crops grow	1
		(iii)	 any one from: pressure allow concentration temperature ignore heat catalyst. 	1 [12]
11	(a)	any •	one from: protection / improve lifespan improve appearance.	1
	(b)	(i)	Bleach	1
		(ii)	Hydrogen is less reactive than sodium	1
		(iii)	1 bonding pair of electrons 6 unbonded electrons on Cl accept dot, cross or e or – or any combination	1
		(iv)	Covalent	1
		(v)	Hydrogen chloride has a low boiling point.	1
			Hydrogen chloride is made of simple molecules.	1

	(c)	(i)	oxygen	www.tutorzone.co.uk
			accept carbon dioxide	1
		(ii)	aluminium ions are positive	1
			so are attracted (to the negative electrode) allow opposites attract	
		(iii)	Reduction	1
		(iv)	slide allow move	•
	(d)	(i)	C	1
		(ii)	strong covalent bonds	1
12	(a)	gian	nt structure / lattice / layers / close packed first 3 marks can be obtained from a suitably labelled diagram incorrect structure or bonding or particle = max 3	[14] 1
		mad	de up of atoms / <u>positive</u> ions	1
		with	delocalized / free electrons	1
		so e	electrons can move / flow through the metal accept so electrons can carry charge through the metal accept so electrons can form a current	
				1

(b)	an a	accept converse for pure metal throughout both marks can be obtained from suitable diagrams allow made of different metals allow mixture of metals / atoms / elements ignore particles ignore properties do not accept compound	1
	allov	has distorted layers	
	,	allow layers are unable to slide	1
(c)	(i)	can return to its original shape	
		accept shape memory alloy	
		accept smart alloy	
		ignore other properties	1
	(ii)	(pure copper is too) soft	
		accept converse	
		accept malleable or bends	
		accept copper is running out	
		ignore references to strength and weakness	1
	(iii)	aluminium oxide	
		accept alumina	
		accept Al ₂ O ₃	
		ignore bauxite / aluminium ore	1
	(iv)	any one from: different conditions different catalyst different pressure allow different concentration different temperature.	
		do not accept different monomers	1

	(d)	any • • •	two from: accurate sensitive rapid small sample. both needed for 1 mark	1 [11]
13	(a)	(i)	silver nitrate	
			allow AgNO₃	1
		(ii)	potassium carbonate or allow K ₂ CO ₃	
			sodium carbonate allow Na ₂ CO ₃	1
	(b)	base		
			allow ionic	
			ignore insoluble or soluble	
			ignore alkali	1
	(c)	(i)	evaporate or	
			crystallise	
			allow heat or boil or leave (to evaporate) allow cool	
			ignore filtration unless given as an alternative	
			do not accept freeze or solidify	
			do not accept needed of soliding	1
		(ii)	2 (HNO ₃)	
			accept multiples	1
		(iii)	9	
		` ,	accept nine	

	(d)	6.21 / 207	0.72 / 16	www.tutorzone.co.uk
	(-)		1 mark for dividing mass by A _r	
				1
		= 0.03	= 0.045	
			1 mark for correct proportions (allow multiples)	
				1
		2	3	
			1 mark for correct whole number ratio (allow multiples). Can be	
			awarded from formula.	
				1
		Pb ₂ O ₃		
			allow O_3Pb_2	
			ecf allowed throughout if sensible attempt at step 1	
			correct formula with no working gains 1 mark	
				1 [10]
				[10]
14	(a)	lattice / giai		
			max 3 if incorrect structure or bonding or particles	1
				1
		ionic or (co	ontains) ions	1
				1
		Na+ and Cl	-	
			accept in words or dot and cross diagram: must include type and	
			magnitude of charge for each ion	1
				-
		electrostati		
			allow attraction between opposite charges	1
				1
	(b)	hydrogen		
			allow H ₂	1
				1
		sodium hyd		
			allow NaOH	1
				1
	(c)	any one fro	•	
			e should have the right to choose icient evidence of effect on individuals	
			duals may need different amounts.	
			allow too much could be harmful	
			ignore religious reasons	
			ignore cost	
			ignore reference to allergies	
				1

www.tutorzone.co.uk (d) (i) one bonding pair of electrons accept dot, cross or e or - or any combination, eg 1 6 unbonded electrons on each atom 1 (ii) simple molecules max 2 if incorrect structure or bonding or particles accept small molecules accept simple / small molecular structure 1 with intermolecular forces accept forces between molecules must be no contradictory particles 1 which are weak or which require little energy to overcome - must be linked to second marking point reference to weak covalent bonds negates second and third marking points 1 iodine has no delocalised / free / mobile electrons or ions (iii) 1 so cannot carry charge if no mark awarded iodine molecules have no charge gains 1 mark 1 [14] magnesium loses electrons (a) there are four ideas here that need to be linked in two pairs. 1 two electrons 1 chlorine gains electrons magnesium loses electrons and chlorine gains electrons scores 2 marks. 1 two atoms of chlorine magnesium loses two electrons and two chlorines each gain one electron will score full marks. 1

	(b)	95		www.tutorzone.	co.uk
	(6)	55	correct answer with or without working gains 2 marks		
			if answer incorrect, allow 24 + 35.5 + 35.5 for 1 mark		
				2	
					[6]
16	(a)	(i)	two		
10				1	
		(ii)	a molecule		
		()		1	
		(iii)	one pair of electrons between nitrogen and each of 3 hydrogens		
		(111)	one pair of electrons between mirrogen and each of o hydrogens	1	
			wast sawwast		
			rest correct		
			second mark dependent on first	1	
				-	
	(b)	(i)	(g) (s)	1	
				1	
		(ii)	chloride		
			ignore formulae		
				1	
	(c)	(i)	any one from:		
			 wear goggles 		
			wear gloves		
			do not breathe in fumes		
			wipe up spills immediately		
			work in a fume cupboard	1	
				1	
		(ii)	(particles of) ammonia move faster than (particles of) hydrogen chloride		
			allow diffuses faster		
			allow hydrochloric acid		
				1	
		(iii)	particles / molecules have more energy		
			do not accept atoms / ions		
				1	
			so they move faster		
			ignore references to rate of reaction		
				1	[40]
					[10]
17	(a)	Sulf	ur dioxide causes acid rain.		
• •				1	
	(b)	red /	/ orange / yellow		
			do not accept any other colours		
				1	

	because sulfur dioxide (when in solution) is an acid	www.tutorzone.co.uk	
		1	
(c)	(there are) weak forces (of attraction)		
	do not accept any reference to covalent bonds breaking		
		1	
	between the molecules		
	do not accept any other particles		
		1	
	(these) take little energy to overcome		
	award third mark only if first mark given		

(d) Marks awarded for this answer will be determined by the Quality of Communication (QC) as well as the standard of the scientific response. Examiners should also refer to the information on page 5 and apply a 'best-fit' approach to the marking.

0 marks

No relevant content

Level 1 (1 – 2 marks)

A relevant comment is made about the data.

Level 2 (3 – 4 marks)

Relevant comparisons have been made, and an attempt made at a conclusion.

Level 3 (5 – 6 marks)

Relevant, detailed comparisons made and a justified conclusion given.

examples of the points made in the response

effectiveness

- W removes the most sulfur dioxide
- D removes the least sulfur dioxide

material used

- Both W and D use calcium carbonate
- Calcium carbonate is obtained by quarrying which will create scars on landscape / destroy habitats
- D requires thermal decomposition, this requires energy
- D produces carbon dioxide which may cause global warming / climate change
- S uses sea water, this is readily available / cheap

waste materials

- W product can be sold / is useful
- W makes carbon dioxide which may cause global warming / climate change
- D waste fill landfill sites
- S returned to sea / may pollute sea / easy to dispose of

, [12]

18 (a)

(a) (i) points correctly plotted ($\pm \frac{1}{2}$ small square)

four points = 2 marks three points = 1 mark

Max 2

straight line of best fit using full range of points from 0,0

www.tutorzone.co.uk (ii) any **one** from: must explain why the point is below the line the solution may not have been properly stirred the electrodes may have been a larger distance apart the drop of sodium chloride may have been a smaller volume / smaller allow not enough sodium chloride added allow smaller amount of sodium chloride do not allow too few drops added ignore the student may have misread the conductivity meter 1 (iii) any **one** from: the volume of pure water allow amount the concentration (of the solutions added) the volume (of the drops) of solution added ignore number of drops the distance between the electrodes the same electrodes or electrodes made of the same material same depth or surface area of electrodes in the water constant power supply ignore current stirred 1 (i) because (pure) water is covalent / molecular (simple) or contains molecules 1 therefore (pure) water has no free / mobile electrons or ions molecules do not have a charge or molecules do not contain ions gains 2 marks 1 (ii) because there are ions in sodium chloride allow Na⁺ and / or Cl⁻(ions) **or** ionic bonding. Ignore particles other than ions for MP1. 1

which can move **or** carry the current / charge MP2 must be linked to ions only.

(iii) Hydrogen allow H₂ / H

(b)

[10]

19	(a)	(i)	high	www.tutorzone	e.co.ur
		(ii)	hundred	1	
	(b)	hard		1	
	(c)	(i)	carbon	1	
		(ii)	four	1	
		(iii)	covalent	1	
		(iv)	all	1	
				_	[7]

Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response.

0 marks

No relevant content

Level 1 (1-2 marks)

There is a statement about the bonding and / or structure **or** melting / boiling point of chlorine **or** sodium chloride.

Level 2 (3-4 marks)

There are statements about the bonding and / or structure of chlorine **or** sodium chloride.

Level 3 (5-6 marks)

There are statements about the bonding and / or structure of chlorine **and** sodium chloride.

There is an explanation of why chlorine is a gas **or** sodium chloride is a solid.

Examples of chemistry points made in response:

Chlorine:

covalent bonds between atoms

forming (simple) molecules

no / weak attraction / bonds between molecules

low boiling point

Sodium chloride:

ionic bonds or electrostatic attraction

strong bonds

in all directions

between oppositely charged ions

forming giant lattice

large amounts of energy needed to break bonds

high melting point

[6]

(a)	nanotubes can slide (over each other) allow nanotubes can roll (over each other)	www.tutorzone.co.uk
	because no (covalent) bonds between the nanotubes accept weak forces between the nanotubes or weak intermolecular forces	1 r
	allow layers for nanotubes throughout	1
(b)	delocalised electrons accept free electrons	1

so (delocalised) electrons can move through the graphite

accept so (delocalised) electrons can carry charge through the graphite

[4]

allow (other substances) react with the silicon dioxide

or

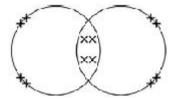
fewer bonds

ignore weaker / fewer forces

or

disruption to lattice

do not accept reference to intermolecular forces / bonds


1

(b) (i) Na₂O

do not accept brackets or charges in the formula

1

(ii)

electrons can be shown as dots, crosses, e or any combination

2 bonding pairs

accept 4 electrons within the overlap

1

2 lone pairs on each oxygen

accept 4 non-bonding electrons on each oxygen

1

(c) lattice / regular pattern / layers / giant structure / close-packed arrangement

1

(of) positive ions or (of) atoms

1

1

(with) delocalised / free electrons

reference to incorrect particles **or** incorrect bonding **or** incorrect structure = max **2**

[7]

23

(a) four

covalent

1

	(b)	beca	use it has a high melting point	
			accept it won't melt	
			accept it won't decompose or react	
			allow withstand high temperatures	
			ignore boiling point	1
	(c)	thin		
				1 [4]
24	(a)	exoth	ermic	
	/b)	'Cho	uld manufacture (called instead of all as an anarest actures 0'	1
	(b)	5110	uld people use kelp instead of oil as an energy source?'	1
		'Will	kelp be more popular than coal in the next 10 years?'	
				1
	(c)	(i)	any four from:	
			If atom or ion omitted = max 3	
			sharing / covalent / metallic = max 3	
			ignore reference to full outer shells	
			potassium (atom) loses (an electron) and iodine electron)	(atom) gains (an
			• 1 electron	
			• iodide (ion) has negative charge allow iodine ion	
			 potassium (ion) has positive charge 	
			 electrostatic attraction or ionic bonding 	
			accept stable (structure) or noble gas (structure)
				4
		(ii)	because a solid is formed (from two aqueous solutions	S) 1
		(iii)	filtering or centrifuging or decanting	1
		(111)	intering of centinuging of decanting	1
				[9]
25	(a)	woul	I melt	
			accept they have a low melting point allow lose their shape	
			ignore would soften when hot	
			ignore weard solicit which hol	

ignore boiling point

accept can use a lower temperature accept less energy needed

(c) (i) mass spectrometer

allow mass spectroscopy

(ii) any **one** from:

ignore reliable ignore more precise

- accurate
- sensitive
- rapid / quicker
- small amount of sample
- (d) any two from:

allow concentration

- pressure
- temperature
- catalyst or initiator
- solvent

26

(a) (i) because they are positively charged

accept they are positive / H⁺ accept oppositely charged **or** opposites attract

ignore they are attracted

(ii) gains one / an electron

accept $H^+ + e^- \rightarrow H$ or multiples allow gains electrons

(b) 3 bonding pairs

1 lone pair

accept 2 non-bonding electrons on outer shell of nitrogen

1

1

(c) (i) hydroxide / OH⁻

do not accept sodium hydroxide

1

(ii) $H^+ + OH^- \rightarrow H_2O$

ignore state symbols ignore word equation

1

(d) Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response. Examiners should also refer to the information in the Reference material.

0 marks

No relevant content.

Level 1 (1-2 marks)

There are basic descriptions of advantages or disadvantages of the electrolysis cells.

Level 2 (3-4 marks)

There are clear descriptions of environmental or economic advantages or disadvantages of the electrolysis cells. Comparisons may be implied.

Level 3 (5-6 marks)

There are detailed descriptions of environmental and economic advantages and disadvantages, comparing the electrolysis cells.

Examples of chemistry points made in the response:

Accept converse where appropriate.

- mercury cell is more expensive to construct
- mercury is recycled but membranes must be replaced
- mercury is toxic but membrane / polymer is not
- removing traces of mercury from waste is expensive
- mercury cell uses more electricity
- mercury cell produces chlorine that is purer
- mercury cell produces higher concentration / better quality of sodium hydroxide (solution)

[12]

(a) Will kelp last longer than coal as an energy source?

1

(b)	any		
	•	cannot be determined by experiment allow can't predict how long kelp / coal will last allow more testing needed	
	•	based on opinion	
	•	ethical or environmental or economic reason allow could damage ecosystem allow reference to cost	2
(c)	(i)	7	1
	(ii)	sodium (atom) loses (electron) and iodine (atom) gains (an electron) reference to incorrect bonding or incorrectly named particle = max 2 any or all marks can be obtained from a labelled diagram ignore inner shell electrons if shown	1
		1 electron	1
		(electrostatic) attraction or forms ionic bond(s)	1
	(iii)	ions can move (in the solution)	1
	(iv)	2 l → l ₂ + 2 e −	1
	(v)	hydrogen is formed	1
		because sodium is more reactive (than hydrogen)	1 [11]
(a)	layer	<u>'S</u>	
	whic	ch have weak forces / attractions / bonds between them second mark must be linked to layers	1
	or		
	whic	ch can slide over each other or separate ignore references to rubbing	1

	(b)	cova	plant	www.tutorzo	ne.d	co.uk
	(D)	COVE	gierit		1	[3]
29	(a)	(i)	nucleus		1	
		(ii)	neutron		1	
		(iii)	electron			
	(b)	(i)	12		1	
	(-)	()			1	
		(ii)	24		1	
	(c)	any ·	four from:			
			sharing / covalent / metallic = max 3			
		•	magnesium (atom) reacts with two iodine (atoms)			
		•	magnesium (atom) loses electrons			
		•	2 electrons (from each atom)			
		•	lodine (atom) gains electron(s)			
		•	1 electron or an electron (to each atom)			
		•	iodide ion formed allow iodine ion			
		•	iodide has negative charge / is a negative ion / particle allow iodine ignore I ²⁻			
		•	magnesium ion formed			
		•	magnesium has positive charge			
		•	oppositely charged ions attract			
		•	a giant structure / lattice is formed allow 1 mark for unqualified reference to ion formation or ionic bonding		4	
						[9]

www.tutorzone.co.uk reference to incorrect bonding or incorrect structure 1 made up of positive ions surrounded by delocalized / free electrons allow positive ions surrounded by a sea of electons 1 1 so a lot of energy is needed to break these bonds / attractions / forces 1 accept tiny / really small / a lot smaller / any indication of very small eg. microscopic, smaller than the eye can see ignore incorrect numerical values if very small is given 1 1 one non-bonded electron from each atom accept electron(s) moving through the structure / nanotube allow electron(s) carry / form / pass current / charge [7] accept Pb(NO₃)₂ do not accept nitride ignore (all) nitrate(s) 1

31

(a) (i) lead nitrate

> sodium iodide / potassium iodide (ii)

> > accept Nal / Kl accept other correct soluble iodides eg HI, MgI₂ do not accept sodium iodine / potassium iodine

	(b)		metallic / sharing / covalent or molecule = max 3	www.tatorzone.co.ur
		magnesiun	n loses 2 electrons	
			all three underlined ideas must be present	
			two underlined ideas = 1 mark eg magnesium loses electrons or	
			magnesium gains 2 electrons	
			or	
			magnesium loses 2 ions	
			nb magnesium ion loses 2 electrons = 1 mark	
			2 errors = 0 marks eg magnesium gains electrons	2
		iodine gain	as 1 / an electron	
			all four underlined ideas must be present	
			three underlined ideas = 1 mark eg iodine gains electron(s)	
			or	
			iodine loses 1 / an electron	
			or iodide gains 1 / an ion	
			or	
			iodide (ion) gains 1 / an electron	
			2 errors = 0 marks	2
	(c)	attractions	/ forces (of attraction) / bonds are strong or lot of energy needed to l	
	()		ces / attractions	
			max 2 if reference to incorrect bonding or incorrect structure or incorrect particles	
			moon oot partiolog	1
		boogues o	propitally charged ione attract as electrostatic attraction between ione	
		because of	ppositely charged ions <u>attract</u> or electrostatic <u>attraction</u> between ions	1
				-
		in giant str	ucture or lattice	
			ignore many bonds	
			ignore ionic bonding unqualified	4
				1 [9]
32	(a)	1 / one		1
				1
	(b)	(i) proto	ons	
				1
		(ii) neutr	rons	
				1
		(iii) 7		
				1

	(c)	(i)	losing	www.tutorzone.co.uk
				1
		(ii)	a positive	1
		(iii)	electrostatic	•
		(111)	Ciconostatio	1
	(d)	high	melting points	
		otro	ag banda	1
		Stroi	ng bonds	1
	(e)	(i)	58.5	
		(11)		1
		(ii)	mole	1
	(f)	very	small (particles) or	
			ignore tiny / small / smaller / microscopic etc.	
		1-10	00nm in size or	
		(par	ticle with a) few hundred atoms	
				1 [12]
33	(a)	(alloy	y) atoms / ions / particles not in layers	
			accept layers are distorted	
			accept different (size) particles / atoms	1
		so, ((alloy) layers / atoms / ions / particles can't slide	
			if no other mark awarded allow (an alloy) is a mixture of metals for mark	1
			<u>.</u>	1
	(b)	dian	nonds have a giant covalent structure	1
		dian	nonds have strong bonds between carbon atoms	1
		ulan	ionas nave strong bonas between carbon atoms	1
	(c)	(i)	a compound	
		(ii)	CH	1
		(ii)	CH ₄	1
		(iii)	covalent	
				1

(d) methane has a low boiling point or boiling point less than 20°C molecules

1

because it has small molecules

accept it has forces between molecules accept weak forces between molecules for 2 marks

[9]

34

(a) (i) was well qualified

1

1

(ii) check the results of the experiment

1

(b) (i) cannot move

1

(ii) melt it / make it a liquid allow heat it

allow dissolve (in water) / make a solution

1

(iii) they are positive

allow opposites attract or opposite charges

1

1

(iv) atoms

[6]

35

(a) (i) M_r of $NH_3 = 17$

correct answer with or without working gains 3 marks accept correct rounding of intermediate answers can be credited from correct substitution from step 2

1

or

2 (moles of) $NH_3 = 34$

or

 $14 \rightarrow 17$

or

 $28 \rightarrow 34$

 $(28/34) \times 6.8$

allow ecf from step 1

nitric (acid) allow HNO₃ ignore incorrect formula

(iv) $(NH_4)_2 SO_4$ allow $(NH_4^+)_2 SO_4^{2-}$

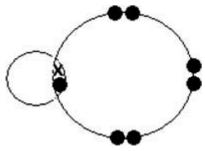
[12]

1

allow add to / dissolve in water

allow turn it to liquid / make it molten

allow heat until liquid


ignore heat

		(ii) th	ney are positive	www.tutorzone.co.u
		0	or	
		0	opposite charges or opposites attract do not accept electrodes attracting do not accept positive electrons	1
		(iii) cł	hlorine	
			accept Cl ₂	
			do not accept chloride	
				1 [9]
38	(a)	(i) C		1
		(ii) C	`arD	1
		(ii) C	C or D	1
		(iii) A	·	
				1
	(b)	covaler	nt	1
	(c)	layers		
	(0)	,		1
		can slic	de / move over each other	
			accept are weakly bonded (owtte)	
			allow no bonds between layers ignore slip / rub	
			ignore slip / rab	1
				[6]
20	(a)	oxvae	en and water	
39	` '	, 0	both needed for mark	
			allow hydrogen oxide for water	
			in any order ignore formulae	
			ignore remaiae	1
	(b)	(i) b	pest fit line, omitting point at 10s	
			straight line drawn through all correct points	1
				1

	(ii)	circle around point at 10 s	www.tutorzone.co.uk
		allow any indication	1
	(iii)	7.5	
		allow ecf from candidate's line	
	<i>(</i> ;)		1
	(iv)	increases (with time)	
		accept goes from 0 to 12.5	1
(c)	(i)	higher	
			1
	(ii)	more concentrated	
			1
(d)	(i)	share	1
	(ii)	covalent	
	(11)	Covalent	1
	(iii)	simple molecules	
			1
(e)	Wat	er has a boiling point of 100°C	1
			1
	wat	er has a melting point lower than room temperature	1
			[12]
(a)	any	one from:	
	•	they are negative / anions	
		allow Cl⁻	
		ignore atoms / chlorine	
		do not accept chloride ions are negative electrodes	
	•	they are attracted	
	•	they are oppositely charged	
			1
(b)	hydı	rogen is less reactive than sodium	1
			_

(c)	hydroxide (ions) / OH-
	ignore OH
	do not accept NaOH / sodium hydroxide

(d) (i)

allow any combination of dots or crosses ignore chemical symbols

1

(ii) covalent

allow close spelling errors apply list principle

1

1

(iii) hydrogen (ion) / H+

ignore (aq) / H do not accept hydrochloric acid / HCl apply list principle

[6]

41

(a)

(i) mention of molecules **or** any reference to incorrect bonding = max 2

giant structure / lattice or particles arranged in a regular pattern allow close packed / layers

1

sea of electrons / delocalised electrons allow free electrons

1

positive ions and electrons attract each other ignore metallic bonds

appropriately labelled diagrams can gain first two marks

	(ii) (sea of) electrons can move through the structure allow free / roaming / mobile electrons	www.tutorzone.co	ɔ.uk
	or delocalised electrons	1	
(b)	(metal) oxide / ionic compound formed	1	
	ions not free to move		
	or		
	electrons cannot move through the structure allow no / fewer delocalised / free / roaming / mobile electrons	1	[6]
(a)	any two from assume it = methanol allow converse for water		
	shorter / quicker soaking time allow it is quicker		
	takes less time / quicker to dry		
	or faster evaporation		
	dissolves quicker / better in methanol	2	
(b)	(i) CH ₄ O	1	
	(ii) covalent	1	
(c)	it is made of small molecules	1	[5]
(a)	high melting point	1	
	not flammable	1	

(b)	(i)	all	www.tutorzone.	co.uk
			1	
	(ii)	two	1	
	/!!! \		1	
	(iii)	covalent	1	
	(iv)	very strong		
	()	· , · · · · · ·	1	[6]
				[o]
(a)	(i)	65		
()	()	correct answer with or without working = 2 marks		
		if answer incorrect		
		evidence of (81 - 16) for 1 mark		
		ignore units		
			2	
	(ii)	zinc		
		accept error carried forward from (a)(i)		
		allow correct symbol		
		answer given should be element / metal closest to their answer		
		do not allow compounds		
			1	
(b)	(i)	it loses electrons		
		sharing / covalency = max 1 mark		
			1	
		three electrons		
			1	
	(ii)	8 electrons shown in second shell.		
		accept dots / crosses / mixture of dots and crosses / e		
		electrons do not need to be paired		
		do not allow extra electrons in first shell		
			1	[E]
				[6]

three from:

reference to ionic / metallic / intermolecular / (small) molecules = max 2

structure: (max 2)

- giant structure / macromolecule / all the atoms are joined together

 allow (giant) lattice

 ignore large structure

 ignore diamond structure
- covalent (bonds)
- strong bonds / bonds difficult to break
- each silicon atom forms 4 bond sand / or each oxygen atom forms 2 bonds

explanation: (max 2)

- a lot of energy needed to break the bonds
- high melting point

if neither point given accept high temperature needed to break bonds for 1 mark

does not burn or react with oxygen

[3]

3

1

1

46

- (a) carbon
- (b) layers

have weak forces / attractions / bonds between them ${f or}$ are only held together weakly

second mark must be linked to layers

or

can slide over each other **or** separate (1)

(c)	covalent

www.tutorzone.co.uk

1

[4]

47

(a) gives out / releases / transfers to surroundings heat / energy ignore light / burns ignore the wire gets hot

1

(b) activation energy

1

(c) (aluminium +) oxygen (→) aluminium oxideaccept correct formulae

1

(d) C

1

(e) (i) a negative

1

(ii) loses

1

(iii) gains

1

1

two

[8]

48

(a)

6.21

1

1 mark for dividing mass by A_r max 2 if A_r divided by mass

1

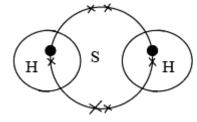
= 0.03 = 0.04

1 mark for correct proportions

1 mark for correct whole number ratio (allow multiples) can be awarded from correct formula

1

Pb₃O₄


1 mark for correct formula

ecf allowed from step 2 to step 3 and step 3 to step 4 if sensible attempt at step 1

correct formula with no working gains 2 marks

1

(b) (i)

allow all dots **or** all crosses **or** e **or** e⁻ ignore inner shells and any inner electrons allow 4 non-bonded electrons anywhere on shell as long as not in overlap – need not be paired

1

(ii) forces of attraction / bonds <u>between</u> molecules are weak (owtte)

do **not** accept intramolecular forces / covalent bonds are weak

do **not** accept reference to ions

or

intermolecular forces / bonds are weak (owtte)

or

it is made of small molecules with weak forces of attraction

if 2 marks not awarded

made of small molecules / simple molecular gains 1 mark forces of attraction are weak (without specifying between mole

forces of attraction are weak (without specifying between molecules / intermolecular) gains 1 mark

(accept easily broken / not much energy needed to break instead of weak)

bonds are weak without specifying intermolecular would not gain a mark and would be ignored

2

1

(iii) 4

[8]

(a)) (i) mix	(owtte)
(u	, ,	'/ ''''	(OWLLO)

accept to allow more collisions / helps particles to collide (owtte) idea of more efficient heat transfer do **not** allow heat is a catalyst

(ii) higher **and** more

1

powder and big

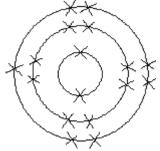
1

concentrated and more

1

1

(b) electrons


1

(c) H+

[6]

50

(a)

accept dots / crosses / e must be drawn on diagram electrons do not need to be paired ignore brackets or + or -charges ignore 2,8,7

1

(b) (one) electron

recognition that electrons are involved

lost / given away / transferred from sodium / transferred to chlorine owtte

must be linked to electrons

accept loses electron(s) for 2 marks

NB loses 2 or more electrons gains 1 mark

reference to sharing / covalent max 1 mark

ignore charges on ions formed

1

(c) (i) any **one** from:

- ions / atoms / they are / it is negatively charged / anions accept they are negative
- opposite (charges) attract
 accept they are <u>attracted</u> or it is oppositely charged
 ignore opposite forces attract

1

(ii) hydrogen

accept H₂ ignore H or H+

1

(d) (i) poisons released into environment (owtte)

accept any sensible idea of harm / harmful / poisons / poisonous / pollution / damaging do **not** accept answers such as global warming / ozone layer etc. ignore safety unless qualified

1

(ii) any one sensible idea eg

 loss of work / unemployment eg shops / house prices etc.

or

company goes out of business

- any adverse effect on local economy (owtte)
- any adverse effect on paper production / cost of paper / cost of water (treatment)
 allow less expensive to use chlorine or converse
- chlorine (compounds) have been used (for many years) without causing harm owtte
- only a tiny amount of chlorine is released so it would not cause harm ignore uses of chlorine to treat drinking water unless qualified

(b) sharing / covalent / metallic = max 3

any four from:

- magnesium (atom) reacts with <u>two iodine (atoms)</u>
- magnesium (atom) loses
- 2 electrons
- iodine (atom) gains
- 1 electron or an electron
- iodide ion formed

 allow iodine ion

 allow iodine

 ignore l²-
- iodide has negative charge / is a negative ion / particle
- magnesium ion formed
- magnesium has positive charge
- oppositely charged ions attract
- a giant structure / lattice is formed
 if reference to ions being formed is made unqualified, allow 1 mark

[8]

(a) (i) lead nitrate

53

accept Pb(NO₃)₂ do **not** accept nitride

sodium iodide / potassium iodide

accept Nal / KI
accept other correct soluble iodides
do **not** accept sodium iodine / potassium iodine

1

1

(b) metallic / sharing / covalent **or** molecule = max **3**

magnesium loses 2 electrons

all three underlined ideas must be present two underlined ideas = 1 mark eg magnesium loses electrons

or

magnesium gains 2 electrons

or

magnesium loses 2 ions nb magnesium **ion** loses 2 electrons = **1** mark 2 errors = **0** marks eg magnesium gains electrons

all four underlined ideas must be present

2

iodine gains 1 / an electron

three underlined ideas = 1 mark eg iodine gains electron(s)

or

iodine loses 1 / an electron

or

iodine gains 1 / an ion

or

iodide (ion) gains 1 / an electron

2 errors = 0 marks

2

(c) any **two** from:

mention of molecules / intermolecular / covalent / atoms = max 1

- forces (of attraction) / bonds are strong or lot of energy needed to break bonds
- oppositely charged ions <u>attract</u> or electrostatic <u>attraction</u> between ions
- giant structure or lattice

allow many bonds

ignore ionic bonding unqualified

2

[9]

www.tutorzone.co.uk

54

(a) C_3H_8

capital letters for symbols numbers must be halfway or lower down the element symbol

allow H_8C_3

do **not** allow 3:8 **or** C_3 and H_8

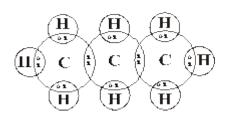
(b) (i) electron

1

(ii) covalent

1

1


1

(c) low and small

both for 1 mark

[4]

55 (a)

allow all dots

or

all crosses

or

combination

or

all e / e-

or –

or other suitable symbols

centre of symbols must be on **or** inside overlapping areas within reason

	(b)	(i)	any two from:	www.tutorzone.co.uk
			 no change initially or stays constant at the beginning 	
			• increase	
			slowly at first and then more rapidly accept converse arguments	
			allow vapour pressure is 0 at any temperature <-100°C for 1 mark accept positive correlation	
			accept explanation based on kinetic theory eg particles have more kinetic energy	
			allow reasonable attempt at using numbers	2
		(ii)	-44 (using graph) accept -43 to -45	1
	(c)	•	intermolecular forces / bonds or forces / bonds between molecules	1
		•	bonds / forces are weak	
			<u>covalent</u> bonds are weak = 0 marks	
			if they do not gain either of the marks on the left then allow simple covalent / molecular / made of small molecules for 1 mark	
				1 [6]
56	(a)	cov	alent	1
	(b)	(i)	liquid	1
		/::\	fluorino	_
		(ii)	fluorine $accept F/F_2$	
			do not accept fluoride	
			22 1. 2. 4000pt 11001140	1

[5]

(c)	(i)	should fluoride ions be added to drinking water?	www.tutorzone.
	(ii)	any one from:	
		not enough reliable/valid evidence	
		may be other factors involved	
		it is an opinion / choice / belief / ethics issue	
		it can't be scientifically investigated allow can't do an experiment ignore test mark independently of (c) (i)	1
(a)	(i)	any one from:	
		they are positive / cations	
		• they are H ⁺	
		opposite charges attract ignore atom	1
	(ii)	potassium is more reactive (or reverse) assume 'it' refers to hydrogen allow potassium reacts with water allow potassium is very reactive or most reactive metal / element allow hydrogen gains electrons more easily / is reduced more easily accept potassium is higher up the reactivity series	
(b)	6 ar	accept correct multiples and fractions	
(c)	(i)	the reaction / it is reversible or a description of a reversible reaction	1

allow 'it is an equilibrium'

allow reversible symbol drawn correctly

allow 'the reverse / back reaction'

57

Page 54 of 56

/!!\		
(ii)	lithium	nitrida
(11)		mmae
\ · · · /		

assume that 'it' or if they do not specify means lithium nitride assume lithium / lithium nitrate refers to lithium nitride

 hydrogen is bonded / held / absorbed / has formed a compound / reacted with lithium nitride

1

plus one of:

- does not explode / cause a fire
- is not free / less hydrogen
- is not under pressure
- does not leak
- is only released slowly

1

- compound of hydrogen with lithium nitride / product is (more) stable / less reactive / less chance of a reaction accept converse for hydrogen as below assume that gas / hydrogen means gas in the cylinder
 - hydrogen (in cylinder) / gas is not bonded / held absorbed / in a compound / reacted with lithium nitride

1

plus one of:

- can explode / cause a fire
- is free
- is under pressure
- can leak
- releases quickly

1

(d) (i) loss of an electron **or** loses electrons do not accept any ref. to oxygen

1

1

(ii) full outer shell of 8 electrons on circle need not be paired

can be ×, dot or e

can be x, doi or e

do not accept if extra electrons added to inner shell

[10]

[3]