www.tutorzone.co.uk

Mark schemes

1	(a)	increased speed or harder exercise / running →increased need / use / loss of energy	1				
	allow further you run / walk the more energy you need increased mass / bigger \rightarrow increased use of energy						
	(b)) any three from:					
		 supply / using (more / enough) oxygen or get (more) oxygen in blood(*) 					
		 remove (more) CO₂(*) 					
		 doing (more) work or using (more) energy allow produce energy(*)					
		for <u>respiration</u>					
		 prevent build up of lactic acid or prevent oxygen debt or prevent anaerobic (respiration) or allow aerobic (respiration) 	3				
2	(a)	circulation / mixing / described	1				
		or					
		temperature maintenance					

supply oxygen

do not allow oxygen for anaerobic respiration

or

for aerobic conditions

or

for faster respiration

1

[5]

1

- (b) any one from:
 - energy supply / fuel
 or use in respiration
 do not allow just food / growth
 ignore reference to aerobic / anaerobic
 - <u>material</u> for growth
 or to <u>make</u> mycoprotein
- (c) (heat / energy) from <u>respiration</u> allow <u>exothermic</u> reactions allow description eg <u>breakdown</u> of glucose / catabolism ignore metabolism ignore aerobic / anaerobic
- (d) (i) any **one** from:
 - compete (with Fusarium) for food / oxygen
 or reduce yield of Fusarium
 - make toxic waste products
 or they might cause disease / pathogenic
 or harmful to people / Fusarium
 do not allow harmful unqualified

1

(ii) any **two** from:

- steam / heat treat / sterilise fermenter (before use)
 not just clean
 allow sterilisation unqualified for 1 mark
- steam / heat treat / sterilise glucose / minerals / nutrients / water (before use)
 not just use pure glucose
- filter / sterilise air intake
- check there are no leaks

(e) any **three** from:

3

1

- beef is best **or** beef is better than mycoprotein(*)
- mycoprotein mainly better than wheat(*)
- more phenylalanine in wheat than in mycoprotein(*) allow equivalent numerical statements(*)
- but no information given on other amino acids / costs / foods

overall conclusion:

statement is incorrect

or

it would be the best source for vegetarians

or

for given amino acids, beef is the best source

or

3

three foods provide insufficient data to draw a valid conclusion

(a)	94.8				
(b)	(i)	to cool (the body) / maintain (body) temperature do not accept let out heat	1		
	(ii)	water and ions	1		
	(iii)	water ignore CO ₂ , and vapour	1		

	(c)	any two from:	www.tutorzone	.co.uk
		used in respiration		
		provides energy		
		(energy) needed for movement / running / muscle action	2	
			2	[6]
4	<u>In co</u>	brrect sequence:		
	brea	thing	1	
	diffu	sion	1	
	resp	iration		
			1	[3]
5	(a)	respire	1	
		oxygen / glucose glucose / oxygen	2	
			2	

blood

carbon dioxide / heat)tita	
heat / carbon dioxide	} eachonce only	2
		[6]

1

(b) 0.75 to 0.90

ignore working or lack of working

eg. 2.35 – 1.55 or $\frac{(2.35 - 1.0) \times 60}{100}$ or other suitable figures for 1 mark

2

4

(c) any four from:

still need to remove extra carbon dioxide

still need to remove heat / to cool

(some) anaerobic respiration (in exercise)

lactic acid made (in exercise)

oxygen needed to break down lactic acid **or** suitable reference to oxygen debt

lactic acid broken down to CO₂ and water or lactic acid changed into glucose

[7]

7

more energy / respiration required

any four from:

accept it prevents / reduces anaerobic respiration **or** less / no lactic acid reference to increase must be made, but only needed once, provided inference is clear for remainder of points. accept 'delivered more quickly' for 'increase'

increase oxygen uptake into blood (in lungs)

increase oxygen delivery to muscles

increase glucose delivery to muscles

increase removal of heat from muscles or increase delivery of heat to skin

increase removal of carbon dioxide from muscles

increase removal of carbon dioxide from blood (in lungs)

[4]

(a)	(i)	count the pulse or count beats in artery in wrist neck or feel the pulse or take the pulse or find the pulse	www.tutorzone.co.uk
		accept use of heart monitor or heart meter	1
	(ii)	80	
		2 marks for correct answer	
		1f answer incorrect allow 1 mark for showing 8000 divided by 100 or indicating cardiac output divided by stroke volume	
			2
	(iii)	Increased activity stroke volume falls / gets less / should get higher / reach a peak	
		accept does not increase or changes from 134 cm ³ to 127 cm ³	1
	(iv)	1ncreased / more ventricle contractions	
		accept heart beat faster or it beats faster or more powerful contractions	
			1
(b)	(stro	nger heart muscle) increases cardiac output or increases stroke volume	
		accept pumps more blood (per beat) or pumps blood faster	
		ignore heart bigger	1
	so m	nore (oxygenated) blood can be sent <u>to muscles</u>	
		accept more oxygen sent to muscles	
			1 [7]

(a)

9

(i) plotting values for pulse rates;
 2 marks- minus 1 mark for each error to a maximum of 2
 Accept values if plotted on blood volume bar chart
 Non-horizontal tops to bars producing variable values = 1 error
 If drawn as a line graph = 1 mark maximum

Activity

(ii) Either

volume of blood went up then fell; Accept went to a maximum then fell

pulse rate increased (steadily); Accept went up steadily **or** kept going up

Or

at first **or** with low activity **or** with moderate activity both pulse and volume increased;

Accept activity up to wall- papering

with more activity pulse continued to increase but volume fell;

(b) Any two of

with increased activity greater muscle use or greater respiration;

need more glucose **or** oxygen; Accept more sugar

heart beat faster;

Do not accept more air Accept more blood needed **or** blood flows faster If 'more' **or** equivalent stated once it can be accepted elsewhere by implication

[6]

[2]

2

10

X – oxygen

accept O_2

Y - carbon dioxide

accept CO₂

with exercise rate rises; (i) 11 accept between 1 – 2 minutes rate rises 1 (when exercise stops) rate falls slowly; accept gentle fall or steady fall for answers which just describe a rise then a fall allow one mark only as an alternative to the first two points 1 rate does not return to normal or to starting or to resting rate accept rate returns to normal after five minutes or three minutes of rest or after recording ended 1 (ii) 86 (per minute); 1

deduct one mark for each error to max of two if 68 wrongly plotted count as one error (ignore the quality of the line)

[6]

2

3

3

(a) oxygen;)
 carbon dioxide;) allow symbols
 water)
 each for 1 mark

12

 (b) graph with reasonable vertical scales; accurate plotting of all points (ignore lines) and labelling lines histogram – must be coded

gains 3 marks

(c) 6 of: during exercise the level of CO₂ (in the blood) rises; increased breathing to remove excess CO₂; increased oxygen supply to muscles; or increased breathing takes in more O₂ or increased heart rate takes more O₂ to muscles; increased heart rate takes more O₂ to muscles; increased supply of sugar to muscles; increased respiration rate; enable faster rate of energy release; reference to lactic acid (allow even though not on syllabus)/O₂ debt; to avoid cramp; anaerobic reference; reference to removal of 'heat';

 (d) high carbon dioxide concentration; brain/central nervous system; heart muscles (both)

[15]

13	(a)	gluc	ose/sugar water for 1 mark each	2
	(b)	(i)	204 for 1 mark	1
		(ii)	49 gains 2 marks (incorrect answer, but correct method gains 1)	2
		(iii)	3 gains 2 marks (incorrect answer, but correct method gains 1)	2
14	(a)	(i)	reduced sharply for 1 mark	1
		(ii)	converted to glucose which is respired to produce energy (allow answers in terms of glucagon) gains 3 marks	
				3

- (b) (i) athlete A's was most effective since resulted in highest muscle glycogen level on day of race for energy release during race for 1 mark each
 - e.g. excess carbohydrate stored as glycogen rather than fat in short term particularly if glycogen stores depleted for 1 mark each

3

2

[9]

[7]

1

1

2

2

2

4

[8]

(a) oxygen, carbon dioxide or water (vapour) for 1 mark each

15

- (b) idea of more air per breath/deeper breaths *for 1 mark*
- (c) (i) respiration for 1 mark
 - (ii) carbon dioxide, water for 1 mark each
 - (iii) more energy required, for increased muscular activity for 1 mark each

- (a) more energy needed, for increased muscular activity for 1 mark each
- (b) increased sweat production, evaporation of sweat cools body, vasodilation OWTTE, more heat loss (by radiation) for 1 mark each

17

(i)

16

the higher the rate of oxygen consumption, the shorter the time taken to complete *for 1 mark*

1

[6]

2

2

4

1

1

 the faster oxygen is taken into the blood, the faster energy can be released in the muscles, and the faster the athlete can run

for 1 mark each

. .

[4]

[4]

(i) increase in CO_2 concentration leads to increase in volume of air inhaled increase of % carbon dioxide has little effect over most of range / large increase when % carbon dioxide > 5.6 % each for 1 mark

 (ii) idea that depth of breathing changes at low % carbon dioxide, in crease in % CO₂ results in volume of each breath increasing without increase / little increase in number of breaths

each for 1 mark

19 (a) trachea / windpipe bronchus alveoli diaphragm *for 1 mark each*

- (b) alveoli / air sacs (*reject* capillaries) for one mark
- (c) respiration for one mark

[6]

(i)

2

3

1

1

1

1

k	out	
1	%	

gains 2 marks

accept 10.5 - 11.5

 (ii) muscle contraction / limb movement / moving around / chewing heartbeat / breathing / internal muscle activity maintaining body temperature / keeps body warm active uptake synthesising substances (reject growth) any three for 1 mark each

[5]

[4]

21

(a)

(b) ideas of

11

increase / rises

frequently / often

energetically / violently

22

(a) falls

	1
from 0.25	
	1
to 0.19	
but by 0.06 gains two marks	
if <u>neither</u> figure given, accept steadily /	
at constant rate for one mark	
accept mass of oxygen inversely related	
/ negative correlation to height above	
sea level for 2 marks	

www.tutorzone.co.u	k
--------------------	---

	(b)	(i)	1.8			;.co.ur
		()		accept correct readings from graph for (5 and 6.8) if subtraction incorrect for one mark		
				allow one mark for correct subtraction from incorrect readings	2	
		(ii)	(bloo	d can carry) <u>more</u> oxygen	1	[6]
23	any	three	from:			
	heat	prod	uced b	y muscles		
	<u>durir</u>	<u>ng</u> exe	ercise	accept <u>when</u> working		
	by re	espira	tion			
	(skir	ı) tem	peratu	re over muscles rises / more blood to skin over muscles allow vasodilation or arterioles dilate over muscles reject capillaries dilate sweating neutral		[3]
24	(a)	resp	piration	reject start respiring / respire only at night	1	
		no p	hotosy	nthesis because no light	1	
	(b)	phot	osynth	esis rate greater than respiration rate		
				reject no respiration / photosynthesis only	1	
		phot	osynth	esis since light	1	

[4]

2

2

1

(b) (i) more

because exercise makes us sweat **or** work harder accept to cool the body do not credit body hotter or giving off more heat

(ii) more

because she respires more accept she breathes (in and out) more **or** heavier **or** faster

(iii) less

because (more) water has been lost by sweating **or** breathing out **or** other methods

accept arguments about conservation of water

(c) kidney

[8]

	(a)	(i) trachea	
26	(u)	accept windpipe	
			1
		(ii) (left) lung or lungs	
		do not credit right lung	
			1
	(b)	carbon dioxide or water <u>vapour</u>	
		do not credit just 'water'	
			1
		oxygen	
		answers in terms of used air or fresh air or of temperature differences are not acceptable	
		,	1

[4]

		do not credit anaerobic respiration accept cellular respiration	1
(ii)	carbon dio>	xide and water (vapour) both required do not credit heat	
			1
(a)	(i) oxyge	en <i>do not credit air</i>	
	(ii) lung(s	.)	1
	(ii) lung(c	<i>do not credit blood or nose or windpipe alone but accept as a neutral answer if included with lungs</i>	
(b)	oxyden	C	1
(0)	Uxygen		1
	lactic	acid both words required	1
(i)	6 in both sr	Jaces	
()	0 00 05	do not credit if any formula has been altered	1
(ii)	glucose	allow fructose or dextrose	1
(iii)	mitochondr	ia accept organelles	
			1

(i)

27

28

29

(aerobic) respiration

[3]

www.tutorzone.co.uk

[2]

[4]

30

(i)

(a)

more water vapour

- any **two** from
 - * (heart) more muscular accept bigger
 - * (heart) more powerful accept more efficient accept stronger
- (ii) * pauses longer between (heart) beats accepts beats more slowly accept heart rate decreases
 - * less fast around the heart recovers more quickly not just 'heart healthier' do not credit pulse rate slower

[4]

2

1

1

1

1

1

(a)	mor	e water vapour accept more water
	mor	e carbon dioxide
	less	oxygen
(b)	(i)	glucose accept carbohydrate(s) accept sugar(s)
	(ii)	heat or thermal or <u>internal</u> kinetic
	(iii)	lungs accept alveoli / alveolus do not credit air sacs do not credit capillaries both neutral if included with lungs
	(a) (b)	(a) more more (b) (i) (ii) (iii)

accept O ₂	1	
	1	[8]
osynthesis		
	1	
ation		
do not credit combustion		
do not credit decay		
	1	
accept hot or windv or drought		
	1	
rom		

any three from * evaporation (of water)

photosynthesis

respiration

dry

(C)

oxygen

lactic

(i)

(ii)

(iii)

(a)

(b)

32

- or loss of water vapour
- * (mostly) from the leaf / leaves do not credit incorrect reference to leaves
- * through the stomata

accept through each stoma accept through the stomas(sic)

* causing a pull

or causing an increase in osmotic potential (at the top of the plant) or causing an increase in water potential (at the top of the plant) or causing a decrease in osmotic pressure (at the top of the plant)

- * (so that) water moves up (through the plant) do not credit water vapour moves up through the plant
- * as the transpiration stream
- * water enters through roots (and goes up plants)

3

www.tutorzone.co.uk

(i)

[3]

33			1
	(ii)	oxygen or O ₂	
		do not accept O or O ²	
			1
	(iii)	carbon dioxide or CO ₂	
		do not accept CO ²	1
			1
	(a)	to transfer / provide / give release energy	
34	(4)	or production of ATP / adenosine triphosphate (molecules)	
		accept to give heat	
			1
	(b)	(i) $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$	
		accept any other	
		n : 6n : 6n : 6n ratio do not credit if any other changes have been made	
		do not of call in any other changes have been made	1
		(ii) glucose	
		do not credit sugar / sucrose	
			1
	(C)	(i) any two from	
		large surface	
		thin (surface)	
		moist (surface)	
		(with a good) blood supply	
			2
		(ii) carbon dioxide	
		accept water vapour	
		ao not creait just water	1

(d) (i) anaerobic (respiration)

1

3

1

1

[10]

(ii)	any three from
	in mitochondria
	glucose decomposes / breaks down / reacts or glucose \rightarrow lactic acid for (2) marks
	to give lactic acid <i>or</i> breathing hard <i>or</i> lactic acid → CO2 + water
	causing pain
	(leaving an) oxygen debt
	(quick) source of energy
	(but) less efficient than aerobic respiration accept less efficient than with oxygen

35

(i)

 $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$ energy is neutral

formulae all correct with no omissions / deletions

correctly balanced

credit 1 mark if the answer is the exact reverse of an incorrect answer for (a)

(ii) and three from

take up of (soluble) substances / ions against the concentration gradient

or when the concentration (of the substance / ions) is greater inside the cell / cytoplasm than outside it

through the (semi-permeable) (cell) membrane energy from mitochondria

or energy from respiration not just energy

[5]

3

4

2

36

(a) oxygen passes from the air/lungs into the body gains 1 mark

but

oxygen passes from the air/lungs into the blood gains 2 marks

carbon dioxide passes from the body into the air/lungs gains 1 mark

but

carbon dioxide passes from the blood into the air/lungs gains 2 marks

(b) increased/5% more

gains 1 mark

but

6 times more (in air breathed out) gains 2 marks

(a) ideaO₂ increases CO₂ decreases

37

for 1 mark each

2

(b)	(i)	<u>reduced</u>	<u>unchanged</u>	<u>increased</u>
		digestive system	brain	skin
		bone		muscles
				heart and arteries

All (6) correct gains 4 5 correct gains 3 4 correct gains 2 2/3 correct gains 1

Correct wording not needed if unambiguous. No mark if organ repeated.

4

(ii) more/higher/quicker/faster

gains 1 mark

but

7500 more/from 5,000 to 12,500 more gains 2 marks

but

7500 cm³/min more gains 3 marks

or 21/2 times more

[9]

2

2

1

(a) carbon dioxide in range 2.5-5% gains 1 mark

but

carbon dioxide closer to 4% than to 3% or 5% gains 2 marks

OR

oxygen in range 15-17.5% *gains 1 mark*

but

If 3 sectors drawn and two correctly labelled, award marks and ignore remaining sector Oxygen <u>and</u> carbon dioxide secto<u>rs</u> labelled for 1 mark

(b) carbon dioxide oxygen

for 1 mark each

Do not allow water vapour. (Allow correct symbols/formulae)

[5]

00
-70
03

(a) less / low

gains 1 mark

but

(also) half as much **or** still one fifth of what's breathed in gains 2 marks

(b) for energy / respiration [credit for movement / to keep warm] [Do not allow "to live"] for 1 mark

[3]

(a)	(i)	points correctly plotted all correct gains 2 marks 2 correct gains 1 mark	www.tutor
		each part of line correctly drawn (i.e. curve + straight line) for 1 mark each part of line	4
	(ii)	3 (or according to plotted graph) litres per second for 1 mark each	
(b)	lung	ls Id	2
	0100	for 1 mark each	2
(C)	(i)	ideas that	
		energy transferred <u>faster</u> in 100m race	
		carbon dioxide produced faster during 1500m race / more	
		carbon dioxide produced for 1 mark each	3
		correct reference to twice / half as fast in either / both cases for a further mark	-
	(ii)		I
		respiration during 100m race (mainly) anaerobic	
		respiration during 1500m race (mainly) aerobic	
		aerobic respiration produced carbon dioxide	
		anaerobic respiration produced / lactic acid for 1 mark each	1

- appropriate scales (> halfway along each axis)
- all points correctly plotted to better than 1/2 a square
- lines carefully drawn

(allow point to point in this case)

N.B.

- no mark available for labelling axes
- *allow* either orientation for 1 mark each
- (b) (i) ideas that
 - energy transferred faster in 100m race

(not more energy transferred)

carbon dioxide produced faster during 1500m race
 for 1 mark each

(allow more carbon dioxide produced)

correct reference to twice / half as fast in either / both cases for 1 further mark

3

3

(ii)

- respiration during 100m race (mainly) anaerobic
- respiration during 1500m race aerobic
- aerobic respiration produces carbon dioxide
- anaerobic respiration doesn't produce carbon dioxide
 / produces lactic acid
 any two for 1 mark each

(a)

(c) ideas that

- there is an oxygen debt / more than normal oxygen needed
- lactic acid needs to be oxidised / combined with oxygen for 1 mark each