www.tutorzone.co.uk

Mark schemes

1	(a)	It is easily magnetised.	1	
	(b)	p.d. across the secondary coil is smaller (than p.d. across the primary coil)	1	
	(c)	ratio $\underline{V}_p = \underline{6}$		
		V _s 12 accept any other correct ratio taken from the graph	1	
		<u>6</u> = <u>50</u>		
		12 N _p use of the correct turns ratio and substitution or correct transformation and substitution	1	
		N _p = 100 allow 100 with no working shown for 3 marks	1	[5]
2	(a)	(i) generator	1	
		(ii) alternating current	1	
		(iii) voltmeter / CRO / oscilloscope / cathode ray oscilloscope	1	
	(b)	(i) time	1	
		(ii) peaks and troughs in opposite directions	1	
		amplitude remains constant dependent on first marking point	1	
	(c)	any two from:	•	
		 increase speed of coil strengthen magnetic field increase area of coil 		
		do not accept larger	2	[8]

3

correct circuit symbol	ls
------------------------	----

circuit symbol should show a long line and a short line, correctly joined together example of correct circuit symbol:

(b) (i) 6 (V) allow 1 mark for correct substitution, ie $V = 3 \times 2$ scores 1 mark	2
	2
$V = 3 \times 2$ scores 1 mark	2
provided no subsequent step	2
provided no subsequent step	
(ii) 12 (V)	
ecf from part (b)(i)	
18 - 6	
18 – their part (b)(i) scores 1 mark	2
(iii) 9 (Ω)	
ecf from part (b)(ii) correctly calculated	
3 + their part (b)(ii) / 2	
or	
18 / 2 scores 1 mark	
provided no subsequent step	2
(c) (i) need a.c.	
	1
battery is d.c.	
	1
(ii) 3 (A)	
allow 1 mark for correct substitution, ie	
$18 \times 2 = 12 \times I_s$ scores 1 mark	2
	-
(a) there is a magnetic field (around the magnet)	
	1
(this magnetic field) changes / moves	1
	1
and cuts through coil	
accept links with coil	1

[12]

	<u> </u>	p.d. <u>induced</u> across coil	www.tutorzone.co.u	K
	50 a	p.d. <u>maacea</u> across com	1	
	the	coil forms <i>a</i> complete circuit	1	
			1	
	so a	current (<i>is</i> induced)	_	
			1	
(b)	amn	neter reading does not change		
		must be in this order		
		accept ammeter has a small reading / shows a current		
			1	
	zero			
			1	
	area	ter than before		
	grea	accept a large(r) reading		
			1	
	sam	e as originally but in the opposite direction		
		accept a small reading in the opposite direction	1	
			I	
(c)	0.30			
		allow 1 mark for correct substitution, ie $0.05 = Q/6$	•	
			2	
	C/C	coulomb		
		allow A s		
			1 [13]	
			[13]	
(a)	(i)	live		
			1	
	(ii)	react faster		
			1	
	(iii)	live and neutral		
	()		1	
(b)	(i)	ammeter		
(b)	(i)		1	
		to measure current		
		accept to measure amps	1	
			1	

plus any **one** from:

- <u>variable</u> resistor (1) to vary current (1) accept variable power supply accept change or control
- switch (1) to stop apparatus getting hot / protect battery or to reset equipment (1)
- fuse (1) to break circuit if current is too big (1)

(ii) any **two** from:

- use smaller mass(es)
- move mass closer to pivot
- reduce gap between coil and rocker
- more turns (on coil) coil / loop
- <u>iron</u> core in coil
 accept use smaller weight(s)

[9]

2

Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response. Examiners should also apply a 'best-fit' approach to the marking.

0 marks

No relevant / correct content.

Level 1 (1–2 marks)

Either there is an attempt at a description of the construction of a transformer

or

a correct statement of the effect of one type of transformer on the input p.d.

Level 2 (3-4 marks)

There is a description of the construction of a transformer and a correct statement of the effect of one type of transformer on the input p.d.

Level 3 (5-6 marks)

There is a clear description of the construction of a transformer **and** there is a correct description of how transformers affect the input p.d.

details of construction:

extra information

a (laminated) core

core is made from a magnetic material / iron

2 coils

the coils are made from an electrical conductor / copper

the coils are covered in plastic / insulation

the coils are (usually) on opposite sides

step-up transformer has more turns on secondary coil than (its) primary (or vice versa)

step-down transformer has fewer turns on secondary coil than (its) primary (or vice versa)

effect on input p.d. :

step-up transformer, the output p.d. is greater (than the input p.d.) accept voltage for p.d.

step-down transformer, the output p.d. is lower (than the input p.d.)

7

1

(b)	(i)	1.6	www.tutorzone.co.uk
		correct order only	1
		12.8	
			1
	(ii)	values of p.d. are smaller than 230 V	1
			1
(c)	(i)	a.c. is constantly changing direction	
		accept a.c. flows in two / both directions	
		accept a.c. changes direction(s)	
		a.c. travels in different directions is insufficient	1
			Ĩ
		d.c. flows in one direction only	1
	(ii)	an alternating current / p.d. in the primary creates a <u>changing / alternating</u> <u>magnetic</u> field	
			1
		(magnetic field) in the (iron) <u>core</u>	
		current in the core negates this mark	
		accept voltage for p.d.	
			1
		(and so) an <u>alternating</u> p.d.	1
			1
		(p.d.) is <u>induced</u> across secondary coil	1
			[10]
(a)	iron		
(u)	non	correct positions only	
			1
	prim	arv	
	piini		1
	seco	ondary	1
(b)	(i+) o	lecreases the p.d.	I
(b)	(11) C	accept it would increase current	
		accept voltage for p.d.	
		the voltage goes from 230(V) to 20(V) is insufficient	
		do not accept decreases current / energy / power	
		do not accept decreases p.d. / voltage and current	

(c) an environmental

[5]

(a)	(the alternating current creates) a changing / alternating magnetic field				
	(ma	gnetic	field) in the (iron) core accept that links with the secondary coil current in the core negates this mark	1	
	(cau	ising a) potential difference (to be) <u>induced</u> in / across secondary coil accept voltage for p.d.	1	
(b)	(i)	20	allow 1 mark for correct substitution, ie $\frac{230}{V_s} = \frac{575}{50}$ or $\frac{V_s}{230} = \frac{50}{575}$		
	(ii)	0.3 or		2	
	correct calculation using 230 × I_p = their (b)(i) × 3.45 allow 1 mark for correct substitution, ie 230 × I_p = 20 × 3.45 allow ecf from (b)(i) for 20 OR substitution into this equation $\frac{I_p}{I_s} = \frac{N_s}{N_p}$			2	

(c) any **one** from:

1

2

1

1

1

1

[8]

- fewer (waste) batteries have to be sent to / buried in land-fill
- the soil is polluted less by batteries in land-fill
- fewer (waste) batteries have to be recycled
- fewer batteries have to be made
- less raw materials are used in making batteries
- customers have to replace their batteries less often
 longer lifetime is insufficient
- customers have to buy fewer (replacement) batteries
 it costs less is insufficient

(a) 400 000

allow 1 I	mark for o	correct substitution ie
25000	800	
?	12800	
or		

$\frac{25}{2} = \frac{800}{12800}$

(b)	(i)	any	one	from:
-----	-----	-----	-----	-------

do **not** accept any response in terms of heat insulation, safety or electric shock

- (so that there is) no short circuit
- (so that the) current goes around the coil do **not** accept electricity for current
- (so that the) current does not enter the core
- (ii) (easily) magnetised (and demagnetised)
 accept '(it's) magnetic'
 do not accept 'because it's a conductor'
- (iii) alternating current in the primary (coil)

produces a <u>changing</u> magnetic field (in the core)

2

- (c) any **two** from:
 - if the (local) power station breaks down / fails / demand / load exceeds supply
 - electricity / power can be switched from elsewhere in the system / from other power station(s)
 - electricity can be generated in places remote from customers
 - (in total) fewer power stations are needed
 - power available in rural / remote areas
 - National Grid allows for (better) control of supply and demand
- [9] which causes the magnet to turn / spin / rotate (a) 11 1 (magnetic) field / lines of force / flux rotate(s) / move(s) / through / in / cut(s) the coil do not credit the idea that movement 'creates' the magnetic field 1 potential difference / p.d. / voltage induced across the coil do not credit just 'current induced' 1 (b) any one from: more powerful / stronger / lighter magnet do not credit 'a bigger magnet' larger / more / bigger / lighter cups / with a bigger surface area •
 - longer arms
 - lubricate the spindle
 - add more turns to the coil
- (a) aluminium cannot be magnetised accept aluminium is not magnetic "it" refers to aluminium do not accept aluminium is not easily magnetised reference to conduction and aluminium negates mark
 - iron can be magnetised is insufficient

1

1

[4]

1

1

(b) (i) 10 to 50 either order 1

(ii)	(data is) anomalous		
accept does not fit the pat			
	it is an error is insufficient		

accept 22 do **not** accept any fraction of a turn ie 20.1

secondary p.d. (just) larger than primary p.d. accept output (just) larger than input/2V

or

(iii)

(C)

13

21

there must be more turns on the secondary coil than primary coil do **not** accept coil for turns

to reduce/step-down the (input) p.d./voltage mains p.d. is too high is insufficient step-down transformer is insufficient answers in terms of changing/ stepping-up current **or** fuse blowing **or** not working with 230 volts are insufficient any mention of step-up negates mark stepping down both voltage/p.d. **and** current negates mark

1

[6]

 (a) (i) step-up both parts required
 more turns on the secondary / output (coil) do not accept coils for turns 'secondary output is greater than primary input' is insufficient
 (ii) (easily) magnetised (and demagnetised)

(easily) magnetised (and demagnetised) accept (it's) magnetic it's a conductor negates answer

(b) 60

allow **1** mark for correct substitution, ie
$$\frac{230}{15} = \frac{720}{N_s}$$

[4]

[5]

14	(a)	iron	accept any unambiguous correct indication	1
	(b)	(i)	step-down (transformer) do not accept down step or a description	1
		(ii)	less than accept any unambiguous correct indication	1
	(c)	(i)	2000	1
		(ii)	There is no pattern.	1
15	(a)	10	allow 1 mark for correct substitution ie $\frac{230}{V_s} = \frac{4600}{200}$	2
	(b)	any	one from:	
		•	to prevent short circuiting	
		•	to ensure that the current flows / goes round the coil	
		•	to prevent the <u>current</u> entering the core do not accept electrocution do not accept electricity for current answers including heat / energy loss negate mark	1
	(C)	(i)	(soft) iron	

(i) (soft) iron do **not** accept 'steel'

(ii) can be magnetised

because it is magnetic

answers including it's a conductor negate mark

1

2

1

1

1

1

[5]

16

(a) 400 000

allow 1	mark for	correct substitution ie
25000	800	
?	12800	
or		

 $\frac{25}{?} = \frac{800}{12800}$

volt(s) / V

an answer 400 gains **2** marks an answer 400 kilovolts / kV gains **3** marks although the unit mark is independent to gain **3** marks it must be consistent with the numerical value

(b) any **one** from:

do **not** accept any response in terms of heat insulation, safety or electric shock

- (so that there is) no short circuit
- (so that the) current goes round the coil do **not** accept electricity for current
- (so that the) current does not enter the core
- (c) (the alternating p.d. in the primary causes) an (alternating) current in the primary
 reference to the current in the core negates this mark

(causes an) alternating / changing (magnetic) field in the (iron) core

before the pylons

•

1

1

2

1

(c) each correct (1)

in its correct place

current
coil
field
core
ends

[8]

(a) (it is) magnetic

(b)

or will carry (an alternating) magnetic field or magnetises and demagnetises (easily) reference to conduction negates the mark
so the current / electricity does not flow through the iron / core accept 'so the current / electricity / wires do not short (circuit)' responses in terms of heat insulation negate the mark ignore references to safety

(c) 5.75 or 5.8 or 6(.0)

allow for **1** mark **either**

$$\frac{230}{p.d.} = \frac{20\,000}{500}$$
or

V / volt(s)

20

(a)

(i) (quickly) becomes magnetized
 or (quickly) loses its magnetism
 or 'it's (a) magnetic (material)'
 any reference to conduction of electricity/heat nullifies the mark

1

[5]

2

1

- (ii) any **four** from:
 - insulation prevents electricity/current flowing through the iron/core
 or 'insulation so electricity/current only flows in the wires/turns/coils'
 - <u>alternating</u> current/a.c. in the primary (coil)
 - produces a <u>changing</u> magnetic field (in the iron/core)
 - (and hence magnetic) field in the secondary (coil)
 - induces/generates/produces an <u>alternating potential difference/p.d./voltage</u> across the secondary (coil)
 - (and hence) <u>alternating current/a.c.</u> in the secondary (coil)
- (b) 80 (turns)

or credit (1) for any equation which <u>if correctly evaluated</u> would give 80 example example

$$\frac{230}{5.75} = \frac{3200}{number of turns}$$

21	

(a)

(i)

secondary(coil) / output (coil) do **not** accept just coil

(ii)	<u>core</u> do not accept for either mark it is made out of iron ore	1
	(laminated soft) <u>iron</u> allow 1 mark for 'it is made out of iron core'	1
(iii)	magnetic field accept magnetism / magnetic force	1
	(which is) changing / alternating direction (of field) changes / strength (of field) varies scoring second mark is dependent on first mark	1

(b)	step-up step-down	/.tutorzone.co.uł
	both in the correct order	1
(c)	Do not build new houses	
		1
	Build new power lines away	
	deduct 1 mark for any other(s) to a minimum total of (0)	1
		[8]
(a)	(i) step-down (transformer) because fewer turns on the output/secondary (coil)	
()	no credit for just 'step-down transformer'	
	accept '…less turns…' do not credit '…fewer coils…'	
	or the p.d. across the input / primary will be greater than the p.d.	
	across the output / secondary'	
		1
	 to prevent a short (circuit)(through the turns of wire or through the core do not credit references to safety or heat (insulation) 	
		1
	(iii) (easily) magnetised (and demagnetised)	
	accept '(it's) magnetic'	
	do not accept 'because it's a conductor'	1
(b)	2250	
	correct substitution	
	$eg \frac{150}{p.d.acrosssecondary} = \frac{500}{7500} gains 1 mark$	
	or appropriate transformation	
	eg (p.d. across secondary =) $\frac{number of turns on secondary}{number of turns on primary}$	
	× p.d. across primary gains 1 mark	
		2

www.tutorzone.co.uk

1

- (c) any two from:
 - to reduce the voltage / p.d. (of the domestic supply)
 or to reduce to 230 V allow 'to reduce to 240 V' do not credit 'reduce <u>current</u> to 230V'
 - higher voltage difficult to insulate
 - higher voltage (would) result in (fatal) electric shock
 not just 'less dangerous'
 - domestic appliances are not designed for (very) high voltage (input) / (are designed) for 230V
 do not credit 'to increase efficiency' / 'to save energy' do not credit just 'it's safer'
- (d) any **two** (1) each
 - if the (local) power station breaks down / fails / demand / load exceeds supply

or words to that effect

- electricity / power can be switched from elsewhere in the system / from other power station(s)
 or words to that effect
- electricity can be generated in places remote from customers
 or words to that effect
- (in total) fewer power stations are needed
- power available in rural / remote areas
- National Grid allows for (better) control of supply and demand
 do **not** credit just cheaper / more efficient / safer

[9]

- (a) step-down (transformer)
 - (b) alternating current

23

accept minor misspellings but do **not** credit 'alternative current'

1

1

(c) (i)(ii) magnet

attracts

upwards

correct order essential accept 'up'

[5]

24	(a)	10 500 allow 1 mark for 75 × 32 200 ÷ 230	2	
	(b)	any three from:		
		alternating current (a.c.) in the primary (coil)		
		• produces a changing magnetic field / flux (in the core)		
		which is made of (laminated soft) iron		
		this induces must be idea of inducing something in the secondary coil		
		an alternating potential difference across the secondary coil accept voltage for potential difference	3	[5]
25		allow 1 mark for correct transformation	2	[2]

(i) **one** of the following:

(a)

26

- increase number of turns on the secondary coil
- decrease number of turns on the primary coil

	(ii)	constructed in (thin) layers	www.tutorzone.co.uk
			1
(b)	(i)	transformers only work with a c	1
	(ii)	used to increase or decrease or change voltage or current	
		reducing the energy or heat or power loss (along the cables)	1
		or reduce to safe domestic level	
		must be consistent with first answer	1
			1
	(iii)	(several metres of) air gives good electrical insulation (between cables and earth)	
		or reduce chance of earthing or sparks or arcing	
		or to avoid people touching it	1

(C)	(i)	voltage acrossprimary	no of turns in primary
	(1)	voltage across secondary	no of turns in secondary

accept
$$\frac{VP}{VS} = \frac{NP}{NS}$$

$$or \frac{Vin}{Vout} = \frac{Nin}{Nout}$$

(ii) Np = 4000

$$\frac{25(000)}{275(000)} = \frac{NP}{44000}$$
 for **1** mark

(d) (i) resistance of cable decreases

(ii) convection (to the air) or conduction (to the air) *not radiation*

[11]

1

2

1

27

	(i)	iron	w.tutorzone	e.co.uk
27	(.)	for 1 mark	1	
	<i>(</i> 1)		1	
	(ii)	20 gains 2 marks		
		else working		
		gains 1 mark	2	
	(iii)	reverse input/output		
	(111)	for 1 mark		
		or increase secondary turns		
			1	
				[4]
	(a)	(i) Iron		
28	(a)	for 1 mark		
			1	
		(ii) V/240 = 2000/10 000		
		V = 48 V		
		for 1 mark each		
			3	
	(b)	inducing voltage (emf) in secondary (NOT current) secondary voltage/current is alternating		
		for 1 mark each	4	
	(c)	magnetic field not changing/no electromagnetic induction because direct current		
		for 1 mark each		
			2	[10]
				_

(a) output voltage less than (the) input voltage or p.d. across output less that p.d. across input or output is (only) 4.2 V (whereas) the input is 230V or WTTE (words to that effect)

(b) any **two** from

(made of soft) iron

laminated

or designed to reduce eddy currents *or* made of thin slices with slices of insulating material between them

core(s) joined to make a ring

[3]