Oxford Cambridge and RSA

GCE

Chemistry A

Unit H432A/03: Unified chemistry
Advanced GCE

Mark Scheme for June 2017

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations available in RM Assessor

Annotation	Meaning
	Correct response
A	Incorrect response
BOD	Omission mark
CON	Benefit of doubt given
RE	Contradiction
SF	Rounding error
ECF	Error in number of significant figures
L1	Error carried forward
L2	Level 1
L3	Level 2
NBOD	Level 3
SEEN	Benefit of doubt not given
I	Noted but no credit given

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
$/$	alternative and acceptable answers for the same marking point
\checkmark	Separates marking points
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Answers that can be accepted
ALLOW	Words which are not essential to gain credit
()	Underlined words must be present in answer to score a mark
ECF	Alternative wording
AW	Or reverse argument
ORA	

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

	32A	Mark Scheme June 2017		
Question		Answer	Marks	Guidance
1	(a)	Throughout - ALLOW bonding regions for bonded pairs - ALLOW diagrams for communicating two bonds, two lone pairs and hydrogen bonding in ice - IGNORE responses about open lattice/tetrahedral structure in ice		
		Ice Ice has hydrogen bonds/bonding $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ 2 bonded pairs AND 2 lone pairs Repulsion Lone pairs repel more (than bonded pairs) \checkmark	3	ALLOW more hydrogen bonding/H bonds For $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, - ALLOW water - IGNORE hydrogen bonding
	(b)	It increases/causes/contributes to global warming OR C-H bonds vibrate OR absorb IR \checkmark	1	ALLOW it is a greenhouse gas/increases temp IGNORE ozone, radicals OR acid rain
	(c)	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer $=\mathrm{CH}_{4} \cdot 5.74 \mathrm{H}_{2} \mathrm{O}$ OR 5.74 award 2 marks Mole ratio $\begin{aligned} & n\left(\mathrm{CH}_{4}\right): n\left(\mathrm{H}_{2} \mathrm{O}\right)=\frac{13.4}{16.0}: \frac{86.6}{18.0} \\ & \text { OR } 0.8375: 4.811 \checkmark \end{aligned}$ Formula $\mathrm{CH}_{4} \cdot 5.74 \mathrm{H}_{2} \mathrm{O} \text { OR } 5.74 \checkmark$	2	Working to at least 3 SF but IGNORE 'trailing zeroes', e.g. ALLOW 16 for 16.0 ALLOW algebraic approach, e.g. $\begin{aligned} & n\left(\mathrm{CH}_{4}\right)=n\left(\mathrm{CH}_{4} \cdot \mathrm{xH}_{2} \mathrm{O}\right) \\ & \frac{13.4}{16.0}=\frac{100}{16.0+18 x} \\ & x=5.74 \end{aligned}$ ALLOW ECF from incorrect mole ratio For 1 mark, ALLOW x with < 2 DP: - $x=5.7$ - $x=6$ - $x=5.73$ from 0.8375 and 4.8 from 0.84 and 4.811 - $x=5.71$ from 0.84 and 4.8
	(d)	FIRST CHECK THE ANSWER ON THE ANSWER LINE	4	

Ques	Answer	Marks	Guidance
	IF answer = $188\left(\mathrm{dm}^{3}\right)$ AND use of ideal gas equation Award 4 marks for calculation $\boldsymbol{n}\left(\mathrm{CH}_{4}\right)$ in $1 \mathbf{k g}$ $n\left(\mathrm{CH}_{4}\right)=\frac{1 \times 10^{3}}{16.0} \times \frac{13.4}{100}=8.375 \text { OR } 8.38(\mathrm{~mol})$ Rearranging ideal gas equation $V=\frac{n R T}{p}$ Substitution of values into $V=\frac{n R T}{p}$: - Calculated value of $n\left(\mathrm{CH}_{4}\right)$ (Use ECF) - $R=8.314$ OR 8.31 - TinK: $273 K$ - p in Pa OR kPa 101 OR 101×10^{3} OR 1.01×10^{5} e.g. $\quad \frac{8.375 \times 8.314 \times 273}{\left(101 \times 10^{3}\right)}$ OR $\frac{8.375 \times 8.314 \times 273}{101}$ Final volume in dm^{3} to $\mathbf{3} \mathbf{S F}$ $V=188\left(\mathrm{dm}^{3}\right) \checkmark$		ALLOW use of M (answer to (c) OR 119.32 Examples From $n\left(\mathrm{CH}_{4} \cdot 5.74 \mathrm{H}_{2} \mathrm{O}\right)$ $\frac{1 \times 10^{3}}{119.32}=8.38(1) \rightarrow 188\left(\mathrm{dm}^{3}\right)$ From $n\left(\mathrm{CH}_{4} \cdot 5.7 \mathrm{H}_{2} \mathrm{O}\right)$ $\frac{1 \times 10^{3}}{118.6}=8.43(2) \rightarrow 189\left(\mathrm{dm}^{3}\right)$ From $n\left(\mathrm{CH}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right)$ $\frac{1 \times 10^{3}}{124.0}=8.06(\mathrm{~mol}) \rightarrow 181\left(\mathrm{dm}^{3}\right)$ IF $V=\frac{n R T}{p}$ is omitted, ALLOW when values are substituted into rearranged ideal gas equation.
		$\begin{array}{r} 3 \mathrm{r} \\ 375 \times 8 . \\ \hline 101 \\ 14 \\ 375 \times 2 \\ 375 \times 22 \\ 12 \\ 1=\frac{62.5}{} \\ \hline \end{array}$	$\begin{aligned} & 205\left(\mathrm{dm}^{3}\right) \checkmark \checkmark \\ & \text { rr } n\left(\mathrm{CH}_{4}\right) \text { and } V \text { in } \mathrm{dm}^{3} \\ & \text {) } \downarrow \\ & \text { B) } \checkmark \\ & \text { arks } \\ & -3 \rightarrow 1400\left(\mathrm{dm}^{3}\right) \checkmark \checkmark \checkmark \end{aligned}$
(e)	For fuel OR energy \checkmark	1	ALLOW responses linked with energy. e.g. - to generate electricity

Question		Answer	Marks		Guidance

	Ques	Answer	Marks		Guidance
2	(a)	Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) A comprehensive conclusion, using all quantitative data, to calculate the energy change and ΔH values for reactions 3.1 and 3.2 AND linking ΔH data using Hess' Law There is a well-developed line of reasoning which is clear and logically structured. The working throughout is clearly shown. All values calculated with reasonable numbers of SF and correct signs mostly shown, allowing for ECF. Level 2 (3-4 marks) Attempts to describe all three scientific points but explanations may be incomplete. OR Explains two scientific points thoroughly with few omissions. There is a line of reasoning with some logical structure. There may be minor errors in energy change and errors in the calculations of ΔH for reaction 3.1 or reaction 3.2. Level 1 (1-2 marks) Processes raw mass and temperature data and obtains a calculated value for the energy change using $m c \Delta T$ OR attempts to obtain values for two scientific points but explanations may be incomplete There is an attempt at a logical structure with a line of reasoning to obtain a value for energy change. There may be minor errors in calculation of energy change. 0 marks - No response or no response worthy of credit.	6		Indicative scientific points may include: 1. Masses and ΔT from raw results - $m\left(\mathrm{Na}_{2} \mathrm{O}\right)=1.24(\mathrm{~g})$ - m (solution) $=25.75(\mathrm{~g})$ - $\Delta T=35.0$ (${ }^{\circ} \mathrm{C}$) Energy change from $m c \Delta T$ - energy released in J OR kJ $\begin{aligned} & =25.75 \times 4.18 \times 35.0 \\ & =3767(\mathrm{~J}) \text { OR } 3.767(\mathrm{~kJ}) \\ & \text { (3.767225 unrounded) } \end{aligned}$ 2. $\Delta_{\mathrm{r}} H$ for reaction 3.2 - $n\left(\mathrm{Na}_{2} \mathrm{O}\right)=\frac{1.24}{62.0}=0.0200(\mathrm{~mol})$ - $\Delta_{\mathrm{r}} H$ value $-\frac{3767}{0.0200}=-188\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ (-188.36125 unrounded) 3. $\Delta_{\mathrm{r}} H$ for reaction 3.1 - ΔH value for reaction 3.1 clearly linked to ΔH for reaction 3.2 and reaction 3.3 in energy cycle or an expression: $\begin{aligned} & \Delta H(\mathbf{3 . 1})=\Delta H(3.2)+2 \Delta H(\mathbf{3 . 3}) \\ & -\quad \Delta H(3.1)=-188+(2 \times-57.6) \\ & =-188-115.2=-303(.2)\left(\mathrm{kJ} \mathrm{~mol}^{-1}\right) \\ & (-303.56125 \text { unrounded }) \end{aligned}$ Note Throughout, ALLOW ECF from previous value ALLOW omission of trailing zeroes

Ques	Answer	Marks	Guidance
(b)	\% uncertainties to at least 1 SF, rounded or truncated ONE correct \% uncertainty BOTH correct \% uncertainties mass: $\frac{0.005 \times 2}{1.24} \times 100=0.8 / 0.81$ OR 0.80 (truncated) $\Delta T: \quad \frac{0.1 \times 2}{35.0} \times 100=0.6 / 0.57(\%) \checkmark$ Calculator values: $\begin{array}{ll} \text { mass: } & 0.8064516129 \\ \Delta T: & 0.5714285714 \end{array}$	2	ALLOW error for uncertainty ALLOW ECF from mass and ΔT in 2(a) IGNORE \% uncertainty of mass of solution ALLOW one mark for: - 2 calculations with both $\times 2$ factors missing i.e. mass 0.3% AND $\Delta T 0.4 \%$ - Not converting to \%s using $\times 2$ factors i.e. 0.008 AND 0.006
(c)	ALLOW uncertainty OR error throughout Greater mass of $\mathrm{Na}_{2} \mathrm{O}$ OR more $\mathrm{Na}_{2} \mathrm{O} \checkmark$ For mass, ALLOW amount/moles/quantity larger ΔT OR reduces \% uncertainty in ΔT	2	ALLOW up to 2 marks based on a single mass measurement: one mass measurement OR measure mass directly e.g. tare balance \% uncertainty reduced by half \checkmark IGNORE - repeat and take average - read to more figures (same apparatus) - increase volume (reduces mass error but increases ΔT error) - use a cooling curve - use a lid

Question		Answer		Marks	Guidance
(d)	(i)	sodium nitrate(III)		1	ALLOW sodium nitrite OR sodium nitrite(III)
(d)	(ii)	Sodium $/ \mathrm{Na}$ oxidised from 0 to $+1 \checkmark$ Nitrogen/ N reduced from +3 to $0 \checkmark$		2	ALLOW 1+ for +1 and 3+ for +3 ALLOW N_{2} for nitrogen ALLOW 1 mark for elements AND all oxidation numbers correct, but N on oxidised line and Na on reduced line ' + ' is required in +3 and +1 oxidation numbers
(d)	$\begin{gathered} \text { (iii } \\) \end{gathered}$	$2 \mathrm{NaNO}_{2}+6 \mathrm{Na} \rightarrow 4 \mathrm{Na}_{2} \mathrm{O}+\mathrm{N}_{2} \checkmark$ IGNORE state symbols		1	$\begin{aligned} & \text { ALLOW multiples, e.g. } \\ & \mathrm{NaNO}_{2}+3 \mathrm{Na} \rightarrow 2 \mathrm{Na}_{2} \mathrm{O}+1 / 2 \mathrm{~N}_{2} \end{aligned}$
			Total	14	

Question			Answer	Marks	Guidance
3	(a)	(i)	$\text { (rate }=\text {) } k\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\left[I^{-}\right] \checkmark$ $k=\frac{\text { rate }}{\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\left[1^{-}\right]}=\frac{2.00 \times 10^{-6}}{0.0100 \times 0.0100}=0.02(00)$ units: $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1} \checkmark$	3	Square brackets required IGNORE any state symbols IGNORE $\left[\mathrm{H}^{+}\right]^{0}$ ALLOW ECF from incorrect rate equation BUT units must fit with rate equation used ALLOW $\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1} \mathbf{O R}$ in any order NOTE K_{c} expression with calculation and units $\mathbf{0}$ marks
	(a)	(ii)	Plot graph using $\ln k$ AND $1 / T \checkmark$ (Measure) gradient \checkmark Independent mark $E_{\mathrm{a}}=(-) R \times$ gradient $\mathbf{O R}(-) 8.314 \times$ gradient \checkmark - Independent mark, even if variables for graph are incorrect - Subsumes 'gradient' mark	3	Unless otherwise stated, assume, that In k is on y axis and $1 / T$ is on x axis IGNORE intercept ALLOW gradient $=(-) \frac{E_{\mathrm{a}}}{R}$ NOTE: ALLOW 'Inverse graph' (special case) Plot graph of $1 / T$ against $\ln k$ (Measure) gradient \checkmark Independent mark $E_{\mathrm{a}}=(-) \frac{R}{\text { gradient }} \text { OR }(-) \frac{8.314}{\text { gradient }}$ OR gradient $=(-) \frac{R}{E_{\mathrm{a}}} \checkmark$ Subsumes 'gradient' mark

| Question | | Answer | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |

Question		Answer	Marks	Guidance
(b)	(i)	```Equation \(2 \mathrm{HOCH}(\mathrm{R}) \mathrm{COOH}+\mathrm{Mg} \rightarrow(\mathrm{HOCH}(\mathrm{R}) \mathrm{COO})_{2} \mathrm{Mg}+\) \(\mathrm{H}_{2}\) Organic product \(\checkmark\) Balance Type of reaction Redox```	3	ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above as long as non-ambiguous ALLOW $\begin{array}{ll} 2 \mathrm{HOCH}(\mathrm{R}) \mathrm{COOH}+\mathrm{Mg} \\ \ldots & \rightarrow 2 \mathrm{HOCH}(\mathrm{R}) \mathrm{COO}^{-}+\mathrm{Mg}^{2+}+\mathrm{H}_{2} \end{array}$ ALLOW multiples IGNORE poor connectivity to OH groups Given in question
(b)	(ii)		3	ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above as long as non-ambiguous ALLOW 1 mark of the 2 equation marks for formation of ' 3 ring' with balanced equation: ALLOW condensation polymerisation ALLOW addition-elimination IGNORE elimination IGNORE dehydration

Question		Answer	Marks	Guidance
(c)	(i)		1	ALLOW brackets around structure with negative charge outside, i.e. ALLOW ring (Kekulé structure)
(c)	(ii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer $=1.61 \times 10^{-3}$ award 2 marks $\begin{aligned} & M=418(.0)\left(\mathrm{g} \mathrm{~mol}^{-1}\right) \text { OR } n(\mathrm{Cr})=3.85 \times 10^{-6}(\mathrm{~mol}) \checkmark \\ & \text { Mass }=3.85 \times 10^{-6} \times 418.0=1.61 \times 10^{-3} \mathrm{~g} \checkmark \end{aligned}$	2	Note: $\frac{200 \times 10^{-6}}{52.0}=3.85 \times 10^{-6}$ (at least 3 SF) ALLOW ECF from incorrect M OR $n(\mathrm{Cr})$ ALLOW 3 SF up to calculator value correctly rounded
		Total	19	

Question			Answer	Marks	Guidance
			For 5a(i)-(iv) IGNORE poor connectivity to SH groups Given in question		
5	(a)	(i)	$K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~S}^{-}\right]}{\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{SH}\right]} \checkmark$ Square brackets required	1	ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above as long as non-ambiguous
	(a)	(ii)	 Structure of thioester Complete equation \checkmark	2	ALLOW correct skeletal OR displayed formula OR mixture of the above as long as non-ambiguous ALLOW $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{SH}$ ALLOW $\mathrm{CH}_{3} \mathrm{COOH}$ Thioester functional group must be fully displayed, OR as a skeletal formula but allow $\mathrm{SC}_{4} \mathrm{H}_{9}$ in thioester
	(a)	(iii)		1	IF correct skeletal formula is shown, IGNORE displayed formula in a second structure
	(a)	(iv)	Reactants \checkmark Products AND balanced equation \checkmark	2	ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above as long as non-ambiguous

Appendix for Q5b Level of Response

Results of tests

	B	C	D	E	F	G
Bromine	\checkmark	\checkmark	\checkmark			\checkmark
$\left(\mathbf{H}^{+}\right) \mathbf{C r}_{2} \mathbf{O}_{7}{ }^{2-}$		\checkmark	\checkmark		\checkmark	
2,4-DNP		\checkmark		\checkmark		\checkmark
Tollens		\checkmark				

Possible processes of elimination (not inclusive)

BCDEFG with 2,4 DNP	CEG orange ppt CEG with Tollens EG with bromine	C silver mirror \mathbf{G} decolourises
BDF no change		

BCDEFG with bromine	BCDG decolourise	EF no change E orange ppt/F green	
	EF with 2,4-DNP/($\mathbf{H}^{+} /$) $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$		
	BCDG with Tollens'	C silver mirror	BDG no change
	BDG with $\mathbf{H}^{+} / \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$	D green	BG no change
	BG with 2,4-DNP	G orange ppt	B no change

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
GROUP
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

