www.tutorzone.co.uk

Mark schemes

1	(a)	any one from:		
		 there was a flame energy was given out a new substance was formed the magnesium turned into a (white) powder answers must be from the figure 		
	(b)	Magnesium oxide	1	
	(C)	The reaction has a high activation energy	1	
	(d)	9	1	
	(e)	They have a high surface area to volume ratio	1	
	(f)	any one from:		
		Better coverageMore protection from the Sun's ultraviolet rays	1	
	(g)	any one from:		
		 Potential cell damage to the body Harmful effects on the environment 	1	
	(h)	indication of $\frac{1}{1.6} = 0.625$ and		
		use of indices $10^{-9} - 10^{-6} = 10^{3}$ Both steps must be seen to score first mark	1	
		0.625 × 1000 = 625 (times bigger)	1	[9]
2	(a)	line goes up before it goes down	1	[0]
		energy given out correctly labelled	1	
		activation energy labelled correctly	1	
	(b)	electrostatic force of attraction between shared pair of negatively charged electrons		

1

1

(c) bonds formed = 348 +4(412) + 2(276) = 2548 kJ / mol

bonds broken - bonds formed = 612 + 4(412) + (Br-Br) - 2548 = 95 kJ / mol

Alternative approach without using C-H bonds For step 1 allow = 348 + 2(276) = 900 kJ / molThen for step 2 allow 612 + (Br-Br) - 900 = 95 kJ / mol

193 (kJ / mol)

accept (+)193 (kJ / mol) with no working shown for **3** marks -193(kJ / mol) scores **2** marks allow ecf from step 1 and step 2

(d) Level 3 (5–6 marks):

A detailed and coherent explanation is given, which demonstrates a broad understanding of the key scientific ideas. The response makes logical links between the points raised and uses sufficient examples to support these links. A conclusion is reached.

Level 2 (3–4 marks):

An explanation is given which demonstrates a reasonable understanding of the key scientific ideas. A conclusion may be reached but the logic used may not be clear or linked to bond energies.

Level 1 (1–2 marks):

Simple statements are made which demonstrate a basic understanding of some of the relevant ideas. The response may fail to make logical links between the points raised.

0 marks:

No relevant content.

Indicative content

Size and strength

- chlorine atoms have fewer electron energy levels / shells
- chlorine atoms form stronger bonds
- CI–CI bond stronger then Br–Br
- C–Cl bond stronger that C–Br

Energies required

- more energy required to break bonds with chlorine
- more energy given out when making bonds with chlorine
- overall energy change depends on sizes of energy changes

Conclusions

- if C–Cl bond changes more, then less exothermic
- if C–Cl bond changes more then more exothermic
- can't tell how overall energy change will differ as do not know which changes more.

[14]

the rest of the diagram correct with four non-bonding electrons on the oxygen giving a total of eight electrons in oxygen outer energy level.

gains 2 marks

(c) (i) ±3024 (J) www.tutorzone.co.uk

		correct answer with or without working gains 3 marks	
		if the answer is incorrect, award up to 2 marks for the following steps:	
		• $\Delta T = 14.4(^{\circ}C)$	
		• 50 x 4.2 x 14.4	
		allow ecf for incorrect ΔT	
			3
	(ii) 0.01	5(2173913)	
	()	correct answer with or without working gains 3 marks	
		if answer is incorrect, allow 1 mark each for any of the following steps up to a max of 2.	
		• 0.70g	
		• M_r of ethanol = 46	
		• 0.70/46	
		allow ecf in final answer for arithmetical errors	
			3
	(iii) ±198	8 720(J / mole)	
		$c(i) \div c(ii)$	
		allow ecf from (c)(i) and (c)(ii)	
		0.015 gives 201600	
		0.0152 gives 198947	
		0.01522 gives 198686	
			1
(d)	(as the maintermole	olecules get bigger or the number of carbon atoms increases) the cular forces	
		allow intermolecular bonds	
			1
	(intermole	ecular forces) increase	
		allow more / stronger (intermolecular forces)	
			1
	and there	fore require more (heat) energy to overcome	
		breaking covalent bonds or unspecified bonds max 1 mark (M3)	
			1
			[15]
(a)	31		

4

(a)

(b)	(i)	any two from:	www.tutorzone.co.uk
(U)	(1)	 incorrect reading of thermometer / temperature 	
		 incorrect measurement of volume of acid 	
		 incorrect measurement of volume of alkali (burette). 	
			2
	(ii)	alass is a (heat) conductor or polystyropo is a (heat) insulator	
	(11)	glass is a (field) conductor of polystyrene is a (field) insulator	
		answer needs to convey idea that neat lost using glass or not lost using polystyrene	
		accept answers based on greater thermal capacity of glass (such as "glass absorbs more heat than polystyrene")	
			1
(\mathbf{a})	(1)	tomporaturo increases	
(0)	(1)	temperature increases	1
			-
	(ii)	no reaction takes place or all acid used up or potassium hydroxide in exc	ess 1
		cool / colder potassium hydroxide absorbs energy or lowers temperature	
		ignore idea of heat energy being lost to surroundings	
		ightere hada er heat energy zeing teet te earreananige	1
	<i>/</i> ····		
	(111)	take more readings	
		ignore just "repeat"	1
			1
		around the turning point or between 20 cm ³ and 32 cm ³	
		accept smaller ranges as long as no lower than 20 cm ³ and no	
		higher than 32 cm ³	
			1
(d)	1.61	or 1.6(12903)	
		correct answer with or without working scores 3	
		if answer incorrect, allow a maximum of two from:	
		moles nitric acid = (2 × 25 / 1000) = 0.05 for 1 mark	
		moles KOH = (moles nitric acid) = 0.05 for 1 mark	
		concentration $KOH = 0.05 / 0.031$	
		answer must be correctly rounded (1.62 is incorrect)	
			3
(e)	sam	e amount of energy given out	
			1
	whic or	ch is used to heat a smaller total volume or mixture has lower thermal capac	city
	num	ber of moles reacting is the same	
	but t	he total volume / thermal capacity is less	
		if no other marks awarded award 1 mark for idea of reacting faster	
			1

any correct indication of the bond – the line between letters	1
Methane contains atoms of two elements, combined chemically	1
(i) activation energy labelled from level of reagents to highest point of curve <i>ignore arrowheads</i>	1
enthalpy change labelled from reagents to products	
Energy Energy Change ΔH	
arrowhead must go from reagents to products only	1
(ii) 2 O ₂	1
2 H ₂ O if not fully correct, award 1 mark for all formulae correct. ignore state symbols	1
(iii) carbon monoxide is made	1
this combines with the blood / haemoglobin or prevents oxygen being carried in the blood / round body or kills you or is toxic or poisonous <i>dependent on first marking point</i>	-
(iv) energy is taken in / required to break bonds accept bond breaking is endothermic	1
energy is given out when bonds are made accept bond making is exothermic	1
the energy given out is greater than the energy taken in <i>this mark only awarded if both of previous marks awarded</i>	1

(a)

(b)

(C)

circle round any one (or more) of the covalent bonds

(d)	(i)	energy to break bonds = 1895	www.tutorzone.co.uk
(u)	(י)	calculation with no explanation max -2	
		calculation with no explanation max - 2	1
		energy from making bonds = 1998	1
			1
		1895 - 1998 (= -103)	
		or	
		energy to break bonds = 656	
		656 - 759 (= -103)	
		allow:	
		anow.	
		$\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}$	
		413 + 243 - 327 - 432 = -103 for 3 marks.	1
			1
	(ii)	The C — Br bond is weaker than the C — CI bond	
			1 [15]
			[10]
(a)	any	one from:	
	•	solution becomes colourless or colour fades	
	•	zinc becomes bronze / copper coloured	
		allow copper (torms) or a solid (torms)	
	•		
	•	bubbles or fizzing	
		ianore precipitate	
		ignore precipitate	1
(b)	Impr	ovement:	
	use	a plastic / polystyrene cup of add a lid	
		accept use lagging / insulation	1
			1
	reas	on - must be linked	
	redu	ice / stop heat loss	
	OR	ovomont:	
	use	a digital thermometer	
		allow use a data logger	
	reas	on - must be linked	
	more	e accurate or easy to read or stores data	
		allow more precise or more sensitive	
		ignore more reliable	
		ignore improvements to method, eg take more readings	
			1

(c) Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response. Examiners should also refer to the information in the Marking Guidance and apply a 'best-fit' approach to the marking.

0 marks

No relevant content

Level 1 (1-2 marks)

There is a statement about the results.

Level 2 (3-4 marks)

There are statements about the results. These statements may be linked or may include data.

Level 3 (5-6 marks)

There are statements about the results with at least one link and an attempt at an explanation.

Examples of chemistry points made in the response:

Description:

Statements

Concentration of copper sulfate increases Temperature change increases There is an anomalous result The temperature change levels off Reaction is exothermic

Linked Statements

Temperature change increases as concentration of copper sulfate increases The temperature change increases, and then remains constant After experiment 7 the temperature change remains constant

Statements including data

The trend changes at experiment 7 Experiment 3 is anomalous

Attempted Explanation

Temperature change increases because rate increases Temperature change levels off because the reaction is complete

Explanation

As more copper sulfate reacts, more heat energy is given off Once copper sulfate is in excess, no further heat energy produced

	(a)	(i)	11	www.tutorzone.co.uk
7	(u)	(י)		1
		(ii)	4620 (J)	
			correct answer gains 2 marks with or without working	
			allow 4.62kJ for 2 marks	
			if answer is incorrect:	
			100 × 4.2 × 11 gains 1 mark	
			or	
			100 × 4.2 × (their temp. rise) gains 1 mark	
			or	
			$100 \times 4.2 \times (\text{their temp. rise})$ correctly calculated gains 2 marks	
				2
	(b)	the	temperature increases	
	()		allow gets hotter	
			allow heat / energy is given off	
				1
	(\mathbf{c})	<i>(</i> i)	(operay of) products lower than (operay of) reactants	
	(0)	(1)	allow converse	
			allow arrow C pointe downwards	
			anow arrow C points downwards	1
		<i>(</i> !!)		
		(11)	A	1
				[6]
	(a)	(i)	nothing can enter and nothing can leave the reaction	
8	(u)	(י)	allow sealed reaction vessel	
				1
		(::)	forward and backward reactions have some rate	
		(11)	forward and backward reactions have same rate	1
			so there is no (overall) change in quantities of reactants and products	
			allow concentrations of reactants and products	1
				1
	(b)	(i)	natural gas	
			allow methane / CH₄	
			allow fossil fuels / hydrocarbons	
			allow water	
				1
		(ii)	provides an alternative reaction pathway	
				1
			which has a lower activation energy	
			ignore references to collisions	
				1

	(iii)	the amount (of ammonia) increases		an
		allow yield increases	1	
		the equilibrium moves to the side (of the equation) with fewer (gaseous) molecules / moles		
		allow it favours the forward reaction	1	
(c)	(i)	vertical arrow from reactants to maximum	1	
	(ii)	(energy of) products higher than (energy of) reactants allow converse		
	(iii)	amount of hydrogen iodide decreases	1	
		equilibrium moves in the direction of the endothermic reaction	1	
		allow it favours the forward reaction	1 [12	2]
(a)	(i)	any one from:		
		 incorrect measurement of temperature or volume incorrect recording of temperature failure to stir heat loss 		
		ignore faulty equipment	1	
	(ii)	32 - 33	1	
	(iii)	55	1	
	(iv)	20	1	
	(v)	4620 allow 4.62 kJ for 2 marks	1	
		J / joules allow kJ if evidence of dividing by 1000 mark independently, but if a numerical answer has been divided by	,	
		1000 must be kJ. allow ecf from their answers to (iii) and (iv)		

but twice as much water to heat

allow more energy released but more water to heat for **2 marks** if no other mark awarded, allow twice the amount of hydrochloric acid used for **1 mark**

				[8]
10	(a)	(i)	covalent	1	
		(ii)	increases the rate of reaction	1	
	(b)	(i)	the reaction is reversible	1	
		(ii)	at lower pressure the molecules will be further apart	1	
			so there will be fewer collisions <u>per unit time</u> accept frequency of collisions lower	1	
		(iii)	as the temperature increases, the yield of the reaction increases	1	
		(iv)	2 molecules / volumes become 4 or more molecules / volumes of product than reactant		
				1	

(c) Marks awarded for this answer will be determined by the Quality of Communication (QoC) as well as the standard of the scientific response. Examiners should also refer to the information on page 5, and apply a 'best-fit' approach to the marking.

0 marks

No relevant content

Level 1 (1 – 2 marks)

Candidate has written about some basic points from the table but has not added any extra knowledge. Candidate may have included advantages **or** disadvantages.

Level 2 (3 – 4 marks)

Candidate has attempted an evaluation using points from the table and their own knowledge. Candidate has included advantages **and** disadvantages.

Level 3 (5 - 6 marks)

Candidate has given an evaluation that includes both advantages and disadvantages. Candidate has clearly linked points from the table with their own knowledge and uses appropriate scientific terminology.

examples of the points made in the response

Advantages of using hydrogen:

- its combustion only produces water
- combustion of hydrogen does not produce carbon dioxide or does not contribute to climate change
- petrol requires much more oxygen to burn so partial combustion is possible producing carbon monoxide
- combustion of hydrogen does not produce any particulates or does not contribute to global dimming
- petrol comes from a non-renewable source **or** there are renewable ways of producing hydrogen, eg electrolysis of water.

Disadvantages of using hydrogen:

- hydrogen has to be stored at high pressure or risk of explosion or larger volume needed for storage.
- much less energy produced from the combustion of hydrogen or need to refuel more often
- most methods of producing hydrogen need fossil fuels.

 11
 (a) products are at a lower energy level than reactants
if candidate has drawn a profile for an endothermic reaction
penalise first marking point only
 1

 1
 activation energy correctly drawn and labelled
 1

 ΔH correctly labelled
 1

	(b)	(i)	-93 (k per mole)	www.tutorzone.co	.uk
	(0)	(1)	correct answer with or without working gains 3 marks		
			ellew 2 marks for +02 k l par malo		
			allow 2 marks for +93 kg per more		
			It any other answer is seen award up to 2 marks for any two of the steps below:		
			bonds broken (614 + 193) = 807 (kJ) or (614 + 193 + (4 × 413)) = 2459(kJ)		
			bonds formed (348 + 276 + 276) = 900(kJ) or 348 + (2 × 276) + (4 413) = 2552(kJ)	×	
			bonds broken – bonds formed		
			allow ecf for arithmetical errors		
				3	
		(ii)	more energy is released when the bonds (in the products) are formed	1	
			than is needed to break the bonds (in the reactants)		
			if no other marks gained, allow 1 mark for energy released for bonc making and energy used for bond breaking	1	
				1	
				E	8]
10	(a)	the f	orward and backward reactions occur		
12			allow reversible		
				1	
		at (a)	veetly) the same rate		
		al (e	xactiy) the same rate	1	
				Ĩ	
		in a o	closed system		
			allow therefore the concentrations / amounts of the reactants and products <u>remain</u> the same		
				1	
	(b)	(i)	increasing the temperature would <u>lower</u> the yield of ethanol or the (position of the second	on of)	
			if student has stated that increasing the temperature increases the yield then award 0 marks		
				1	
			since the backwards reaction is endothermic or the forward reaction is		
				1	
		<i>(</i>)			
		(ii)	increasing the pressure would <u>increase</u> the yield of ethanol or the (positic equilibrium moves to the right	n of)	
			if student has stated that increasing the pressure decreases the yield then award 0 marks		
				1	

		because the position (of equilibrium) moves in the direction of the lower in of moles (of gas)	www.tutorzone.co.uk number
		2 (moles / molecules / volumes / particles) on lhs / 1 (mole / molecule / volume / particle) on rhs	
	(c)	(a catalyst) provides an alternative pathway	1
		with lower activation energy	-
		or	
		(a catalyst) lowers the activation energy (1)	
		so less energy is needed to react or more particles react (1)	1
			[9]
13	(a)	any three from:	
		 concentration of (salt) solution volume of (salt) solution 	
		 ignore amount of solution initial temperature (of the solution) 	
		 <i>ignore room temperature</i> surface area / form of metal moles of metal 	
		allow mass / amount	
		ignore time ianore size of tube	
	4.5		3
	(b)	20	1
		32	1
		12 	
			1
	(c)	(i) four bars of correct height	
		3 correct for 1 mark	
			2
		bars labelled	1

(ii)	one variable is non-continuous / categoric accept qualitative or discrete	www.tatorzone.co.ur
	accept no values between the metals	1
(iii)	magnesium	1
	because biggest temperature change	Ĩ
	accent gives out most energy	
	ignore rate of reaction	
	dependent on first mark	
	dependent on mark	1
(iv)	does not react / silver cannot displace copper	1
	because silver not more reactive (than copper) or silver below copper in reactivity series	
	do not accept silver is less reactive than copper sulfate	1
(v)	replace the copper sulfate	
()	could be implied	
		1
	with any compound of a named metal less reactive than copper	
	allow students to score even if use an insoluble salt	
		1 [16]

[12]

		allow only conducts as a liquid
	(ii)	chlorine
	(iii)	they are positively / oppositely charged
		or
		they are attracted
	(iv)	2
(b)	(i)	any one from:
		not all the magnesium was collected
		 used less time or lower current or different battery / power pack or different balance or lower voltage
		 error in reading balance error in recording result
	(")	
	(11)	1.11 correct answer with or without working gains 2 marks.
		if answer incorrect, allow 1 mark for 0.99 or for 1.13 + 1.11 + 1.09
<i>.</i>	<i>"</i>	
(C)	(i)	25 – 25.3 correct answer with or without working gains 2 marks.
		If answer incorrect, allow 1 mark for 24 / 95
	(ii)	71
(d)	(i)	reversible reaction
	(ii)	decreases

(a)

(i)

ions cannot move

(a)	(i)	so ions can move (and carry charge)	
		allow so it can conduct (electricity)	
		allow so charged particles can move	
		do not accent so electrons can move	
		do noi accept so electrons can move	1
	(ii)	because zinc ions gain electrons	
	(")	accept because zinc ions are reduced	
			1
		2 (electrons)	
			1
		zinc is formed	
		accept correct half equation for 3 marks	
		if no mark gained allow	
		positive ions go to negative electrode or	
		opposites attract or	
		reduction (of zinc) or	
		(zinc) gains electrons for 1 mark	1
	(iii)	2 Cl ⁻ → Cl ₂ + 2 e ⁻	
	()	must be completely correct	
			1
(b)	(i)	because the magnesium is <i>a gas</i>	
		allow magnesium goes from solid to gas	
			1
	(ii)	(a reaction which) takes in energy (from the surroundings)	
		accept more energy needed to break bonds than released by forming bonds	
		accept correct reference to energy level diagram	
		allow (a reaction which) takes in heat (from the surroundings)	1
	(iii)	$(M_{\rm r} M_{\rm rO} =) 40$	-
	()	$(M_1 M_2 C^2)^{-1}$	
			1
		1.2 / 24 (x40) or 0.05 (x40)	
		or	
		40 / 24 (x1.2) or 1.67 (x1.2)	
		allow ecf from step 1	
			1

allow ecf carried through from step 1 correct answer with or without working gains **3** marks

(iv) 75(%)

				1	
	(v)	any • •	one from: the reaction is reversible accept incomplete reaction ignore equilibrium not reached some lost / escaped / released (when separated) some of the reactant may react in different ways from the expected reaction impure reactant(s)		
			ignore measurement and calculation errors		
				1	[12]
(a)	elec	1			
(b)	(i)	900	accept any answer between 840 and 960	1	
	(ii)	any	one from:		
		•	little demand few hydrogen cars changeover from petrol to hydrogen will take time allow answers in terms of petrol	1	
(c)	X or	n rising	g section of <i>line</i>		
、 /			-	1	[4]

		allow NH ₃ with incorrect or missing balancing for 1 mark	
		allow multiples	
			2
(b)	(i)	200	
			1
	(ii)	rate of reaction (too) slow	
		allow converse	
		ignore references to yield / cost	
			1
	(iii)	400	
	()		1
	(iv)	lower vield	
	()	allow converse	
		accept shifts equilibrium to left	
		allow favours the backward reaction	
		allow favours side with more (gaseous) molecules	
		allow lower rate	
			1
(c)	(das	ses) cooled	
(0)	(900	it = ammonia	
			1
	200	monialiquefied	
	amm	accent ammonia condensed	
		accept ammonia contensed	
			1
			[8]

 $2NH_3$

(a)

(a)	electrical	www.tdt0r20ne.co.ur
()		1
(b)	using hydrogen saves petrol / diesel / crude oil	
	allow crude oil is non-renewable	
	ignore hydrogen is renewable	
		1
	using hydrogen (in fuel cells) does not cause pollution	
	accept no carbon dioxide produced	
	allow less carbon dioxide produced	
	allow hydrogen produces <u>only</u> water	1
		I
(C)	(i) (–)486	
	correct answer with or without working gains 3 marks	
	If answer is incorrect:	
	$(2 \times 436) + 498$ or 1370 gains 1 mark	
	4 × 464 or 1856 gains 1 mark	
	correct subtraction of ect gains 1 mark	3
	(ii) products lower then reactors	
	(ii) products lower than reactants	1
	reaction curve correctly drawn	1
		_
	activation energy labelled	1
		[9]
(a)	exothermic	
()		1
(b)	'Should people use kelp instead of oil as an energy source?'	
. ,		1
	'Will kelp be more popular than coal in the next 10 years?'	
		1

1

1

1

1

1

1

[9]

(C) (i) any four from:

> If atom or ion omitted = max 3 sharing / covalent / metallic = max **3** ignore reference to full outer shells

- potassium (atom) loses (an electron) and iodine (atom) gains (an electron)
- 1 electron
- iodide (ion) has negative charge allow iodine ion
- potassium (ion) has positive charge
- electrostatic attraction or ionic bonding accept stable (structure) or noble gas (structure)
- (ii) because a solid is formed (from two aqueous solutions)
- (iii) filtering or centrifuging or decanting
- 20

(a)

(iii)

or

to increase the rate of reaction (i) (ii) H₂SO₄ on the left hand side H₂O on right hand side

> filtration allow centrifuging or decanting ignore evaporation if after filtration

(iv) crystallisation ignore reference to filtration unless given as an alternative

evaporation / heating / boiling / cooling

(v) any **one** from:

		because of an incomplete reaction accept not all acid reacted accept impure reactants accept unexpected reaction ignore reversible reaction	
		 because some (copper sulfate) lost on filtering or when poured into evaporating basin or boiled over or left in apparatus must specify when lost accept some (copper sulfate or acid) spilt 	
		weighing error (of copper sulfate)	1
(b)	(i)	reversible (reaction)	1
	(ii)	300(J) allow the same	1
		(energy) given out / released accept exothermic / – ignore increasing or decreasing energy	
(C)			1
	<u>3.8</u> 63.	$\frac{1}{5}$ $\frac{0.28}{14}$	
		1 mark for dividing mass by A_r (max 2 if A_r divided by mass)	1
	= 0.0	96 = 0.02	-
		1 mark for correct proportions	1
	3	1 <i>1</i> mark for correct whole number ratio (allow multiples). Can be awarded from formula	
	Cu₃N	N ecf allowed from step 2 to step 3 and step 3 to step 4 if sensible	1
		allempt at step 1 correct formula gains 1 mark	1 [13]
(a)	Will k	elp last longer than coal as an energy source?	

1

1

1

1

1

1

1

1

1

1

1

[11]

- (b) any **two** from:
 - cannot be determined by experiment
 allow can't predict how long kelp / coal will last
 allow more testing needed
 - based on opinion
 - ethical or environmental or economic reason
 allow could damage ecosystem allow reference to cost
- (c) (i) 7
 (ii) sodium (atom) loses (electron) and iodine (atom) gains (an electron) reference to incorrect bonding or incorrectly named particle = max 2 any or all marks can be obtained from a labelled diagram ignore inner shell electrons if shown
 1 electron
 (electrostatic) attraction or forms ionic bond(s)
 - (iii) <u>ions</u> can move (in the solution)
 - (iv) 2 I ⁻ → I₂ + 2 e ⁻
 - (v) hydrogen is formed

because sodium is more reactive (than hydrogen)

(a) heat / energy

22

given out / transfers to surroundings the mark for given out / transfers to cannot be awarded without heat / energy allow given off

(b) (i) decreases

increases

		(ii) it gives the particles more energy	www.tutorzone.co	o.uk
			1	
		it makes the particles move faster		
		·	1	[6]
				[o]
23	(a)	eg plastic (beaker) / insulation / lid / cover or any mention of enclosed		
		any sensible modification to reduce heat loss		
		ignore prevent draughts		
		ignore references to gas loss		
		ignore bomb calorimeter	1	
	(b)	all the substances react or all (the substances) react fully / completely or heat evolved quickly or distribute heat	1	
		'so they react' is insufficient for the mark		
		accept increase chances of (successful) collisions / collision rate increase		
		do not accept rate of reaction increase / make reaction faster		
			1	
	(c)	experiment 2 and		
		different / higher / initial / starting temperature		
		accept experiment 2 and the room is hotter / at higher temperature		
		do not accept temperature change / results higher	1	
			1	
	(d)	temperature change does not fit pattern		
		accept anomalous / odd or it is the lowest or it is lower than the others or it is different <u>to the others</u>		
		'results are different' is insufficient		
			1	
	(e)	7 / 7.0		
			1	
	(f)	$(100 \times 4.2 \times 7) = 2940$		
	.,	ecf from (e)		
			1	
	(a)	diagram A and		
	(3)	reaction exothermic / heat evolved / Δ H is negative / temperature rises		
		accept energy is lost (to the surroundings)		
		accept energy of products lower than reactants		
		allow arrow goes downwards		
			1	[7]
				L' J

24	(a)	(i)	energy / heat of products less than energy of reactants	ww.tutorzone.co.uł
			allow converse	
			allow products are lower than reactants	
			allow more energy / heat given out than taken in	
			allow methanol is lower	
			allow energy / heat is given out / lost	
			allow ΔH is negative	1
		(ii)	lowers / less activation energy	
			allow lowers energy needed for reaction or it lowers the peak/ maximum	
			do not allow just 'lowers the energy'	
				1
	(b)	(i)	$(8 \times 435) + 497 = 3977$	
			accept: bonds broken: (2 × 435) + 497 = 1367	1
			(6 × 435) + (2 × 336) + (2 × 464) = 4210	
			bonds made: (2 × 336) + (2 × 464) = 1600	1
			3977 - 4210 = (-) 233	1
			energy change:	
			1367 - 1600 = (-) 233	
			ianore sian	
			allow ecf	
			correct answer (233) = 3 marks with or without working	
				1
		(ii)	energy released forming (new) bonds is greater than energy needed to bre (existing) bonds	eak
			allow converse	
			do not accept energy needed to form (new) bonds greater than energy needed to break (existing) bonds	
				1 [6]
	(a)	(i)	aluminium oxide	
25	(u)	(י)	ignore (III) after aluminium	
			ignolo (in) allor alaniman	1
		(ii)	(because it provides) heat / energy (to overcome activation energy)	
		. /		1
	(b)	(i)	contains only one sort of atom	
				1

	(ii)	the atoms (in cast iron) are different sizes	www.tutorzone.co.uk
	(")	any mention of molecules, maximum 1 mark	
		accent lavers are distorted or structure is disrunted	
			1
		which provents the lowers / rows sliding	
		which prevents the layers / rows sharing	
		for both marks	
			1
(c)	(i)	because aluminium is more reactive than carbon	
(0)	(•)	it' = aluminium must be a comparison between the elements	
		or	
		because aluminium is above carbon in the reactivity series	
		do not accept any comparison of the reactivity of aluminium and	
		iron	
			1
	(ii)	reduces / lowers the temperature for the process or lowers the operating	
		temperature or allows ions to move	
		ignore any temperature values	
		allow reduces the (effective) melting point (of Al_2O_3)	
			1
	(iii)	3	
		accept multiples	
			1
	(iv)	electrons are gained (by Al ³⁺)	
	()	ignore any numbers	
		ignore any reference to oxygen	
			1
	(v)	electrodes are made of carbon	
		allow graphite / coke	
			1
		oxygen is produced (at the positive electrode / anode)	
		$2000 t 20^{2-} \rightarrow 0 + 4e^{-}$	
		accept 20 \rightarrow 0 ₂ + 40	1
		so the electrodes react with the oxygen / are oxidised	1
			÷
		producing carbon dioxide (gas)	
		accept $C + O_2 \rightarrow CO_2$ for marking points 3 and 4.	4
			[13]

26

answers can be in either order

1 proton(s) 1 (b) same number (17) protons or same number electrons if candidate chooses to quote numbers, they must be correct 1 different numbers of neutrons (³⁵Cl has 18 and ³⁷Cl has 20) 1 -184kJ / mol (C) (i) correct answer with or without working gains 3 marks allow 2 marks for 184 kJ / mol If answer incorrect award up to 2 marks for any two of the steps below: bonds broken: (436 + 242) = 678 (kJ) bonds formed: $(2 \times 431) = 862$ (kJ) bonds broken - bonds formed allow ecf for arithmetical errors

(ii)

(a)

27

the reactants and the products at the correct level ignore labels on the axes

•

	(ii)	final temperatures got lower or temperature went down	www.tutorzone.co.uk
		ignore comments on energy	1
(b)	poly	styrene / plastic cup or description of insulation / lagging container ignore references to a lid	1
	beca temp	ause (polystyrene) is an insulator or prevents heat / energy gain (and so perature is more accurate)	
		allow references to freat loss of glass conducts / absorbs freat	1
(c)	varia	able: volume or mass or amount of water 1 mark for variable and 1 mark for reason linked to that variable maximum of 4 marks for two variables and two explanations	
	reas the s	on: the greater the volume / mass of water, the more heat energy it contain smaller the temperature change will be do not allow 'time taken to heat'	is or
	varia	able: start temperature or temperature of water	
	reas high	on : the higher the start temperature, the more heat energy it contains or th er the final temperature will be	е
		do not allow higher temperature change	
	varia	able: the time at which the temperature is measured	
	reas mea temp	con : if left longer may gain heat energy from surroundings or warm up or if sured too soon not all ammonium chloride will have dissolved so less berature change	
	varia		
	reas parti	on: if it dissolves faster or is stirred faster then it will cool more quickly or s cles dissolve faster	mall
			max. 4
(d)	(i)	all 7 points correct at least 4 points plotted correctly scores 1 mark	2
	(ii)	straight line through first 3 or 4 points	
		lines must be drawn with a ruler	1
		straight line through last three points	
		if no other marks awarded allow curve joining lines for 1 mark	1
	(iii)	valid extrapolation of line back to mass of 0 g	1
			-

		c	correct value read from graph	www.tutorzone.co.uk
			award 1 mark for 20 – 21 if no extrapolation shown	
				1
	(e)	not all	of the ammonium chloride would dissolve	
			allow water limiting factor or all water used	1
				1
		so no i	more heat would be absorbed	
		or		
		the sol	ution is saturated (1)	
			allow water limiting factor or all water used	
		so son	ne ammonium chloride remains solid or not all will dissolve (1)	
				1
	(f)	greater	volume of water was used or volume was twice as large	
			allow different volume of water	
				1
		so tem	perature decrease was less than the first student's result	
			allow so final temperature was higher	
		or		
		starting	g temperature / room temperature was higher (1)	
		so fina	I temperature was greater than the first student's result (1)	
			accept by 6 °C or was any value in range 26 – 27°C	
				1 [18]
	(a)	(i) t	he more sodium hydrogencarbonate the greater the temperature chang	2
28	(4)	(.) (accept examples from the table	-
				1
		ι	up to 8 spatula measures	
			accept any correct indication of when change occurs	
				1
		t	hen the temperature change is constant	
			It no marks awarded allow 1 mark for: the more sodium hvdrogencarbonate the lower the final	
			temperature	
				1
		(ii) e	energy is taken in from the surroundings or endothermic	
				1

	(b)	(i)	gas / carbon dioxide / steam / water is produced accept carbon dioxide is a gas or steam / water is a gas	www.tutorzone.c	co.uk
			allow gas / air expands when heated	1	
		(ii)	no, because (reaction) is exothermic or	1	
			yes, to start the reaction allow no, because (reactants) were formed by heating		
			ignore references to cooling	1	
	(c)	(i)	84		
			correct answer with or without working gains 2 marks if no answer or incorrect answer then evidence of		
			$23 + 1 + 12 + (3 \times 16)$ gains 1 mark	2	
		(ii)	14 29	2	
		(")	accept rounding to 14.3 or 14		
			allow ecf from (c)(i)	1	[9]
29	(a)	(i)	42 000		
			correct answer gains 2 marks with or without working allow 42 <u>kJ</u>		
			if answer incorrect : correct substitution 500 x 4.2 x 20 gains 1 mar	'k 2	
		(ii)	any two from:	-	
			eye protection		
			lab coat		
			heat-proof mat		
			(heat-proof) gloves		
			(long) hair tied back		
			stand up		
			secure the beaker	2	
		(iii)	Stir the water before measuring the temperature.	_	
			Place a lid on the beaker	1	
				1	

	(b)	the products \rightarrow S	www.tutorzone.co.uk
	(~)		1
		the activation energy $\rightarrow Q$	1
		the energy released by the reaction $\rightarrow P$	1
	(c)	carbon dioxide produced <i>it = propane</i> <i>allow converse arguments</i> <i>allow groophouse gas (global warming (atmospheric pollution</i>)	1
		(crude oil / propane) non-renewable	1
		allow crude oil running out	1 [11]
30	(a)	air	1
	(b)	recycle	
		allow re-use	1
		(unreacted) nitrogen and hydrogen	
		allow N_2 and H_2	1
	(c)	$N_2 + 3H_2 \rightarrow 2NH_3$	
		allow correct multiples	1
	(d)	allow converse arguments ignore references to compromise	-
		because a higher temperature would reduce (equilibrium) yield allow higher temperature favours backward reaction	
			1
		because a lower temperature would reduce rate	1
	(e)	 (i) (energy of) reactants greater than (energy of) products allow converse allow (overall) energy decreases allow energy required to break bonds is less than the energy released making bonds 	
			1

	(ii)	line starting and finishing at same levels but with lower peak	www.tutorzone	.co.uk
	()		1	[8]
(a)	(i)	ΔT = (64 – 17) = 47 °C		
			1	
		750 x 4.2 x 47		
		allow ecf using their ΔT	1	
			1	
		148 050		
		correct answer gains 3 marks with or without working		
		allow 148.05 kJ		
		allow 148 kJ		
		—	1	
	(ii)	1085.7		
		correct answer gains 2 marks with or without working.		
		allow answer in range 1080 – 1089 for 2 marks		
		allow answer in range 1080000 – 1089000 for 1 mark		
		if answer is incorrect allow 6/44 = 0.136 mol for 1 mark		
		allow (44 x their (a)(i))/(6 x 1000) correctly calculated for 2 marks		
		allow (44 x their (a)(i))/6 correctly calculated for 1 mark		
		Allow any answer in range 1051 - 1059 for 2 marks with or without	+	
		working.	L	
		allow any answer in range 1051000 – 1059000 for 1 mark		
			2	
	(iii)	repeat the experiment and then calculate the mean		
			1	
		any one from:		
		• use a lid		
		insulate the beaker		
		do not allow flammable insulation		
		• stir		
		prevent draughts		
			1	
	(iv)	inaccuracies likely to have similar effects		
		allow systematic errors	1	
			1	

1

1

1

1

[12]

(b) (i) 8530

correct answer gains 3 marks with or without working. If answer is incorrect; $(6 \times 803) = \frac{4818}{9}$ gains 1 mark $(8 \times 464) = \frac{3712}{9}$ gains 1 mark correct addition of their calculated values gains 1 mark (ecf)

(ii) 6481 – 8530) = (-) 2049 ignore sign allow ecf from (b)(i)

(a) any **one** from:

32

- no method / electrolysis / equipment / technology allow 'didn't know how to' or 'no knowledge'
- aluminium is a very reactive metal
- high melting point
 allow 'couldn't heat it enough'
- potassium had not been discovered
- (b) because <u>others</u> / <u>scientists</u> / <u>they</u> could not repeat the experiment ignore he could not repeat the experiment

or

others / they could not obtain the same results

- (c) reaction is endothermic or reaction takes in heat / energy accept activation energy ignore rate / high temperature ignore bonds broken
- (d) (aluminium chloride + potassium) → aluminium + potassium chloride in either order accept correct formulae ignore metal ignore balancing
- (e) when tested it had the properties of a metal accept a test for a metal property eg conductivity / reaction with acid
- 1

[6]

33	(a)	22		1	
	(b)	(i)	exothermic	1	
		(ii)	С	1	
				1	
			gives out most heat energy		
			allow has highest (final) temperature or hottest	1	
	(C)	(i)	increases		
				1	
		(ii)	blue		
				1	
		(iii)	reversible (reaction)		
			allow goes both ways or two / either way	1	
		(iv)	anhydrous copper sulfate	1	
				1	[8]
	(\mathbf{a})	aivo	a aut aparque ar baat		
34	(a)	give	s out energy of neat	1	
	(b)	(i)	accept qualified answers in terms of volume of gas related to time		
			fast initially	4	
			slows down	1	
				1	
			reaction stops		
			accept reaction is now very slow	1	

	(b)	(ii)	21		www.tutorzone.	.co.uk
	()	()			1	
		(iii)	84			
				correct answer with or without working = 2 marks		
				allow ecf from (b)(ii) correctly calculated for 2 marks		
				allow evidence of 21/25 or (b)(ii)/25 for 1 mark		
					2	
	(C)	bec	ause th	ney / particles have more energy / move faster		
				ignore particles move more / vibrate		
					1	
		(and	d so) p	articles collide more often / more frequently or particles more likely	to collide	
				ignore collide faster		
				ignore more collisions		
					1	
		(and mor	d) more re of th	e of the collisions are successful or particles collide with more energy e particles have the activation energy	gy / harder or	
				accept more successful collisions		
					1	[10]
						[10]
35	(a)	(i)	the te	emperature at start		
				ignore reference to bubbles / heat		
					1	
			the t	emperature at end		
				(measure) the temperature rise / change = 2 marks		
				(measure) the temperature 1 mark		
					1	
		(ii)	temp	perature would increase		
				allow it gets hot(ter) / warm(er) or heat given off		
				allow energy released / transferred		
					1	

1

1

1

1

[8]

- (b) any **one** from:
 - volume of acid
 allow amount allow liquid
 - temperature of acid
 - size of magnesium ribbon
 allow volume / mass / amount
 - surface area of magnesium ignore size of test tube and reference to water
 - (i) (Test tube) B
 (ii) produces bubbles faster accept more bubbles

or

faster rate of reaction

(C)

	allow most reactive
(d)	The particles move faster
	The particles collide more often

36

(a)	(i)	4	1
	(ii)	(Make) 3	1
		biggest <u>temperature</u> <u>rise</u>	1
(b)	(i)	1008 (kJ) correct answer with or without working gains 2 marks if incorrect answer given allow evidence of 240 × 4.2 for 1 mark	2

(ii) crisps have a high energy content

allow crisps have lots of calories / kilojoules / fat / one ninth of daily energy intake

1

1

3

1

1

1

so if you take in more energy than you need the excess is stored as fat accept consequences: obesity; heart disease; high blood pressure; diabetes; arthritis

or

crisps contain salt (1)

too much salt can cause high blood pressure \boldsymbol{or} heart problems or kidney problems (1)

[7]

(a)

(i) (-)810

ignore sign
correct answer gains $m{3}$ marks with or without working
if the answer is incorrect look at the working up to a maximum of
two
• bonds broken = (4 × 414) + (2×498) = 2652 kJ
• bonds formed = (2x803) + (4x464) = 3462 kJ
correct subtraction of their bonds formed from their bonds
broken

(ii) because energy needed to break the bonds

is less than the energy released when bonds are formed

- (b) to provide <u>activation</u> energy
 - or

(i)

(a)

38

to break bonds

(ii) energy is given out to the surroundings

1

1

[6]

1

1

1

1

1

(b) (i) NO

allow 2NO ignore nitrogen oxide do **not** allow equations

	(ii)	harmful / poisonous (owtte) allow dangerous ignore reference to pollution / global warming do not accept references to ozone layer
(C)	a cat	alyst can speed up a chemical reaction
	differ	rent reactions need different catalysts
(d)	(i)	small <u>er</u> <i>accept less / tiny / very small</i> <i>allow 10⁻⁹</i> <i>do not allow small unless qualified</i>
	(ii)	reduce cost (owtte) or <i>ignore references to energy</i>

save resources / raw materials (owtte)

[8]

39

(a) gives out heat / energy allow release / loses allow the products have less energy

or

energy / heat transferred to the surroundings

ignore temperature rises allow more energy given out in forming bonds than taken in to break bonds

1

1

1

1

1

1

1

- (b) (i) speed up the reaction (owtte) accept changes the rate accept lowers activation energy accept increases <u>successful</u> collisions accept allows reaction to take place at a lower temperature
 (ii) nitrogen (N₂) / oxygen (O₂) / products are safe **or** not harmful / pollutant /
 - nitrogen (N₂) / oxygen (O₂) / products are safe or not harmful / pollutant toxic / dangerous / damaging ignore releases nitrogen / oxygen unless qualified

or

(iii)

(harmful) nitrogen monoxide / NO is not released into the air. accept prevents / less acid rain ignore greenhouse gas / ozone layer

2 and 2 accept correct multiples or fractions

- (iv) idea of catalyst not being used up allow not changed by reaction ignore catalyst does not take part ignore catalyst not used in the reaction
- (v) idea of different reactions (require different catalysts) accept catalysts work for specific reactions allow different gases
- (c) smaller / very small / or any indication of very small / 1–100 nanometres / a few (hundred) atoms ignore just small ignore size of the converter

big(ger) surface area
less (catalyst) needed / small amount of catalyst needed

[9]

(a)	A = <u>energy</u> / <u>enthalpy</u> change / difference	
	allow heat change or ∆H	
	allow energy released	
		1
	B = activation energy / EA	
	allow definition of activation energy	
		1
	C = carbon dioxide and water	
	accept products	
		1
(b)	exothermic	
(0)	allow combustion / redox / oxidation	
	ianore reduction / burning	
		1
(a)	correct answer with or without working = 3 marks	
	Mit, (handa brakan) OIAQ (k.)	
	MT: (DOHOS Droken) = 2148 (KJ)	1
		_
	M2: (bonds made) = 2354 (kJ)	1
		I
	M3: change in energy	
	= (-) 206 (KJ)	
	ignore sign	1
		*
(b)	energy released from forming new bonds is greater than energy needed to break existing bonds	

41

allow the energy needed to break bonds is less than the energy released in forming bonds do **not** accept energy needed to form bonds

[4]

1

[4]

(a)	give	s out / releases / transfers to surroundings heat / energy ignore light / burns	
		ignore the wire gets hot	1
(b)	activ	ration energy	1
(c)	(alur	ninium +) oxygen (→) aluminium oxide accept correct formulae	1
(d)	С		1
(e)	(i)	a negative	1
	(ii)	loses	1
	(iii)	gains	1
		two	1