Oxford Cambridge and RSA

Practice paper - Set 1

A Level Chemistry A
H432/01 Periodic table, elements and physical chemistry

MARK SCHEME

Final

MARKING INSTRUCTIONS

PREPARATION FOR MARKING

SCORIS

1. Make sure that you have accessed and completed the relevant training packages for on-screen marking: scoris assessor Online Training; OCR Essential Guide to Marking.
2. Make sure that you have read and understood the mark scheme and the question paper for this unit. These are posted on the RM Cambridge Assessment Support Portal http://www.rm.com/support/ca
3. Log-in to scoris and mark the required number of practice responses ("scripts") and the required number of standardisation responses.

YOU MUST MARK 10 PRACTICE AND 10 STANDARDISATION RESPONSES BEFORE YOU CAN BE APPROVED TO MARK LIVE SCRIPTS.

MARKING

1. Mark strictly to the mark scheme.
2. Marks awarded must relate directly to the marking criteria.
3. The schedule of dates is very important. It is essential that you meet the scoris 50% and 100% (traditional 50\% Batch 1 and 100% Batch 2) deadlines. If you experience problems, you must contact your Team Leader (Supervisor) without delay.
4. If you are in any doubt about applying the mark scheme, consult your Team Leader by telephone, email or via the scoris messaging system.
5. Work crossed out:
a. where a candidate crosses out an answer and provides an alternative response, the crossed out response is not marked and gains no marks
b. if a candidate crosses out an answer to a whole question and makes no second attempt, and if the inclusion of the answer does not cause a rubric infringement, the assessor should attempt to mark the crossed out answer and award marks appropriately.
6. Always check the pages (and additional objects if present) at the end of the response in case any answers have been continued there. If the candidate has continued an answer there then add a tick to confirm that the work has been seen.
7. There is a NR (No Response) option. Award NR (No Response)

- \quad if there is nothing written at all in the answer space
- OR if there is a comment which does not in any way relate to the question (e.g. 'can't do', 'don't know')
- \quad OR if there is a mark (e.g. a dash, a question mark) which isn't an attempt at the question.

Note: Award 0 marks - for an attempt that earns no credit (including copying out the question)
8. The scoris comments box is used by your Team Leader to explain the marking of the practice responses. Please refer to these comments when checking your practice responses. Do not use the comments box for any other reason.

If you have any questions or comments for your Team Leader, use the phone, the scoris messaging system, or email.
9. Assistant Examiners will send a brief report on the performance of candidates to their Team Leader (Supervisor) via email by the end of the marking period. The report should contain notes on particular strengths displayed as well as common errors or weaknesses. Constructive criticism of the question paper/mark scheme is also appreciated.
10. For answers marked by levels of response:

Read through the whole answer from start to finish, concentrating on features that make it a stronger or weaker answer using the indicative scientific content as guidance. The indicative scientific content indicates the expected parameters for candidates' answers, but be prepared to recognise and credit unexpected approaches where they show relevance.

Using a 'best-fit' approach based on the science content of the answer, first decide which set of level descriptors, Level 1 , Level 2 or Level 3 , best describes the overall quality of the answer using the guidelines described in the level descriptors in the mark scheme.

Once the level is located, award the higher or lower mark.
The higher mark should be awarded where the level descriptor has been evidenced and all aspects of the communication statement (in italics) have been met.

The lower mark should be awarded where the level descriptor has been evidenced but aspects of the communication statement (in italics) are missing.

In summary

- The science content determines the level.
- The communication statement determines the mark within a level.

Level of response questions on this paper are 18a and 19a.
11. Annotations

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Underlined words must be present in answer to score a mark
ECF	Alternative wording
AW	Or reverse argument
ORA	

12. Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

SECTION A

Question	Answer	Marks	
1	D	1	
2	C	1	
3	A	1	
4	B	1	
5	B	1	
6	C	1	
7	C	1	
8	D	1	
9	D	1	
10	C	1	
11	B	1	
12	A	1	
13	B	1	
14	A	1	
15			1

SECTION B

Question			Answer	Marks	Guidance
16	(a)			1	ALLOW unpaired electrons in last two boxes pointing down.
	(b)	(i)	$\mathrm{Na}^{6+}(\mathrm{g}) \rightarrow \mathrm{Na}^{7+}(\mathrm{g})+\mathrm{e}^{-} \checkmark$ State symbols must be included	1	ALLOW $\mathrm{Na}^{6+}(\mathrm{g})-\mathrm{e}^{-} \rightarrow \mathrm{Na}^{7+}(\mathrm{g})$ ALLOW e for electron (i.e. charge omitted) IGNORE state with e^{-}
		(ii)	radius decreases AND attraction between (the remaining) electrons and nucleus increases \checkmark	1	ALLOW same number of protons attract fewer electrons ALLOW electron removed from increasing + ion IGNORE : atomic/ionic before radius electron shielding/repulsion decreases effective nuclear charge increases
		(iii)	large difference/increase/rise shows a different/new shell large difference/increase/rise between 1st and 2nd IEs AND 9th and 10th IEs	2	ALLOW energy level for shell DO NOT ALLOW sub-shell or orbital for 1st mark ALLOW a response that clearly shows where there is a large difference/increase, e.g. 'after 1st IE; before 2nd IE
		(iv)	Mg has (outer) electron in (3)s sub-shell AND Al has (outer) electron in (3)p sub-shell (3)p sub-shell has higher energy than (3)s sub-shell	2	ALLOW Mg and Al has (outer) electron in different sub-shells
	(c)		$\mathrm{A}: \mathrm{Sc}^{3+} \checkmark$	2	

Question			Answer	Marks	Guidance
17	(a)		Calcium ion with eight (or no) outermost electrons AND $2 \times$ chloride (ions) with 'dot-and-cross' outermost octet \checkmark correct charges \checkmark	2	For 1st mark, if eight electrons are shown in the cation then the 'extra' electron in the anion must match symbol chosen for electrons in the cation IGNORE inner shell electrons Circles not essential ALLOW 1 mark for correct electron structure and charges but only one Cl drawn ALLOW (with electron structure) $2\left[\mathrm{Cl}^{-}\right] 2\left[\mathrm{Cl}^{-}\left[\mathrm{Cl}^{-}\right] 2\right.$ (brackets not required) DO NOT ALLOW $\left[\mathrm{Cl}_{2}\right]^{-}\left[\mathrm{Cl}_{2}\right]^{2-}[2 \mathrm{Cl}]^{2-}\left[\mathrm{Cl}^{2-}\right.$
	(b)		solution: (enthalpy change for) 1 mole of a compound/substance/solid/solute dissolving (in water) \checkmark	1	IGNORE ‘energy released’ OR ‘energy required’ For dissolving, ALLOW forms aqueous/hydrated ions DO NOT ALLOW dissolving elements IGNORE ionic OR covalent DO NOT ALLOW response that implies formation of 1 mole of aqueous ions
	(c)	(i)		3	Correct species AND state symbols required for each mark. (mark independently) On middle line, ALLOW $^{\text {Ca }}{ }^{2+}(\mathrm{g})+2 \mathrm{Cl}^{-}(\mathrm{aq})$ (i.e. Cl^{-}hydrated before Ca^{2+}) On bottom line, $\mathbf{A L L O W} \mathrm{CaCl}_{2}(\mathrm{aq})$

Question		Answer	Marks	Guidance
	(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE IF answer $=-142\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 2 marks $\begin{aligned} & \Delta_{\text {sol }} H\left(\mathrm{CaCl}_{2}\right)=[-1616+(2 \times-359)]-(-2192) \\ & \text { OR }-2334+2192 \checkmark \\ & =-142 \checkmark\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$	2	IF there is an alternative answer, check to see if there is any ECF credit possible using the working shown. IF ALL 3 relevant values from the information at the start of Q3 have NOT been used, award zero marks unless one number has a transcription error, where 1 mark can be awarded ECF
	(iii)	Comparison of size $\mathrm{Ca}^{2+}>\mathrm{Mg}^{2+}$ Comparison of charge $\mathrm{Na}^{+}<\mathrm{Mg}^{2+}<\mathrm{Al}^{3+} \checkmark$ Comparison of attraction between ions size AND charge linked to greater attraction to $\mathbf{H}_{2} \mathrm{O} \checkmark$	3	IGNORE comparison of size: $\mathrm{Na}^{+}>\mathrm{Mg}^{2+}>\mathrm{Al}^{3+}$
(d)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE IF answer $=-132\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 4 marks Correctly calculates energy released in J OR kJ $=50.21 \times 4.18 \times 31.5=6611 \text { (J) OR } 6.611(\mathrm{~kJ}) \checkmark$ Correctly calculates $n\left(\mathrm{CaCl}_{2}\right)$ $=\frac{5.56}{111.1}=0.05(00) \mathrm{mol} \checkmark$ Correctly calculates ΔH value in J OR kJ In J: $\quad=(-) \frac{6611}{0.0500}$ OR (-)132,220 (J) OR In kJ: $=(-) \frac{6.611}{0.0500}$ OR $(-) 132.22(\mathrm{~kJ}) \checkmark$ (Sign ignored and/or more than 3 SF)	4	FULL ANNOTATIONS MUST BE USED ALLOW calculator value of 6611.1507 down to 3SF value of 6610 DO NOT ALLOW fewer than 3 SF IGNORE units for this mark, i.e. just ALLOW correctly calculated number in either J or kJ ALLOW ECF from $n\left(\mathrm{CaCl}_{2}\right)$ AND/OR Energy released IGNORE absence of - sign and 3 SF requirement

Question		Answer	Marks	Guidance
	Correct $\Delta_{\text {sol }} H$ in kJ AND sign AND 3SF $=-132\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \checkmark$	Final mark requires - sign, kJ AND 3 SF		
(ii)	Temperature change is double $/ \times 2 / 63^{\circ} \mathrm{C}$ AND $\Delta_{\text {sol }} H$ is the same \checkmark Twice the energy produced in the same volume AND ratio of energy produced to mass or number of moles is the same OR $\frac{q}{n}$ is the same \checkmark	ALLOW temperature reached would be $85^{\circ} \mathrm{C}$		

	uestio	Answer	Marks	Guidance
18	(a)*	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) A comprehensive conclusion which correctly links pressure to moles, temperature to ΔH AND correctly identifies problems with use of low temperature and high pressure with reasons AND explains one benefit of using a catalyst There is a well-developed conclusion showing a line of reasoning which is clear and logically structured, linking pressure and temperature with equilibrium shift to the right, giving two reasons for operational conditions different and a positive sustainability comment from use of catalyst. Level 2 (3-4 marks) Reaches a simple conclusion that correctly links pressure to moles, temperature to ΔH Correctly identifies problems with use of low temperature and high pressure with at least one reason OR explains one benefit of using a catalyst The conclusion has a line of reasoning presented with some structure, linking pressure and temperature with equilibrium shift to the right and either giving two reasons for problems and a positive sustainability comment from use of catalyst. Level 1 (1-2 marks) Reaches a simple conclusion that correctly links pressure to moles, temperature to ΔH. OR explains one benefit of using a catalyst	6	Indicative scientific points may include: MAXIMUM EQUILIBRIUM YIELD Pressure: - Right-hand side has fewer number of (gaseous) moles Temperature: - (Forward) reaction is exothermic Igives out heat OR reverse reaction is endothermic Itakes in heat Conditions AND equilibrium shift - Low temperature AND high pressure AND equilibrium (position) shifts to right ACTUAL CONDITIONS - Low temperature give slow rate OR high temperatures to increase rate - High pressure is expensive OR high pressure provides a safety risk CATALYST: ONE benefit from: - reactions take place at lower temperatures with lower energy demand OR reduce CO_{2} emissions/burning fossil fuel

Question		Answer	Marks	Guidance
				COMMON ERRORS $0.0325 \quad 3$ marks + units mark from $\mathrm{N}_{2}=0.620, \mathrm{H}_{2}=1.86, \mathrm{NH}_{3}=0.360(\mathrm{~mol})$
(c)	(i)	IGNORE le Chatelier responses Each marking point is independent K_{c} K_{c} does not change (with pressure/ concentration) \checkmark Comparison of conc terms with more N_{2} [N_{2}] increases OR denominator/bottom of K_{c} expression increases \checkmark yield of NH_{3} linked to K_{c} Chemist is correct AND denominator decreases OR numerator increases to restore equilibrium $K_{\mathrm{c}} \checkmark$	3	FULL ANNOTATIONS NEEDED ALLOW K_{c} only changes with temperature IF $1^{\text {st }}$ marking point has been awarded, IGNORE comments about ' K_{c} decreasing' or ' K_{c} increasing' and assume that this refers to how the ratio subsequently changes. i.e DO NOT CON $1^{\text {st }}$ marking point.
	(ii)	N_{2} obtained from the air AND H_{2} must be manufactured/does not occur naturally \checkmark	1	N_{2} is more readily available not insufficient. ALLOW an example of H_{2} manufacture, e.g. from oil/gas/water BOTH responses required for mark.
		Total	16	

Qu	stion	Answer	Marks	Guidance
19	(a)	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) A comprehensive conclusion which uses quantitative results for determination of the reaction orders AND determination of k with units AND proposes the two-step mechanisms There is a well-developed conclusion showing a line of reasoning which is clear and logically structured. The working for orders, rate equation, rate constant and two-step mechanism are clearly linked to the experimental evidence. Level 2 (3-4 marks) Reaches a sound, but not comprehensive, conclusion based on the quantitative results. Correctly identifies the orders and rate equation AND calculates the rate constant with units OR proposes the twostep mechanism The conclusion has a line of reasoning presented with some structure. The working for orders, rate equation AND rate constant OR the two-step mechanism are linked to the experimental evidence. Level 1 (1-2 marks) Reaches a simple conclusion for orders AND rate equation. The working for orders, and rate equation are linked to the experimental data, but the evidence may not be clearly shown. 0 marks No response or no response worthy of credit.	6	Indicative scientific points may include: Orders and rate equation - NO_{2} and O_{3} both 1st order OR rate $=k\left[\mathrm{O}_{3}\right]\left[\mathrm{NO}_{2}\right]$ - Supported by experimental results Calculation of \boldsymbol{k}, including units - k correctly calculated AND correct units, i.e. $k=1.28 \times 10^{-2}$ - $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ OR $\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}$ Two-step mechanism - Two steps add up to give overall equation - Slow step/ rate-determining step matches stoichiometry of rate equation. e.g. $\mathrm{O}_{3}+\mathrm{NO}_{2} \rightarrow \mathrm{O}_{2}+\mathrm{NO}_{3}$ rate-determining step $\mathrm{NO}_{3}+\mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{5}$ OR $\begin{aligned} & \mathrm{O}_{3}+\mathrm{NO}_{2} \rightarrow 2 \mathrm{O}_{2}+\mathrm{NO} \text { rate-determining step } \\ & \mathrm{NO}+\mathrm{O}_{2}+\mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{5} \end{aligned}$

Question		Answer	Marks	Guidance
20 (a)	(i)	HNO_{3} is a strong acid AND HNO_{2} is a weak acid \checkmark	1	ALLOW HNO_{3} completely dissociates AND HNO_{2} partially dissociates $\text { ALLOW } \mathrm{HNO}_{3} \rightarrow \mathrm{H}^{+}+\mathrm{NO}_{3}^{-} \text {AND } \mathrm{HNO}_{2} \rightleftharpoons \mathrm{H}^{+}+\mathrm{NO}_{2}^{-}$ IGNORE HNO_{3} is a stronger acid ORA IGNORE HNO_{3} produces more H^{+}
	(ii)	$\mathrm{pH}=-\log 0.0450=1.35$ (2 DP required) \checkmark	1	
	(iii)	FIRST CHECK THE ANSWER ON ANSWER LINE IF answer $=2.35$, award all three calculation marks $\begin{aligned} & K_{\mathrm{a}}=10^{-3.35} \text { OR } 4.47 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \\ & {\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(K_{\mathrm{a}} \times\left[\mathrm{HNO}_{2}\right]\right) \text { OR } \sqrt{ }\left(K_{\mathrm{a}} \times[\mathrm{HA}]\right)} \\ & \text { OR } \sqrt{ }\left(K_{\mathrm{a}} \times 0.0450\right) \\ & \text { OR } 4.48 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm} \mathrm{~m}^{-3}\right) \checkmark \\ & \mathrm{pH}=2.35(2 \mathrm{DP} \text { required }) \checkmark \end{aligned}$	3	ALLOW 2 SF to calculator value: $4.466835922 \times 10^{-4}$, correctly rounded IGNORE HNO_{3} in working Always ALLOW calculator value irrespective of working as number may have been kept in calculator. Note: $\mathrm{pH}=2.35$ is obtained from all three values above From no square root, $\mathrm{pH}=4.70$. Worth K_{a} mark only
(b)		FIRST CHECK THE ANSWER ON ANSWER LINE IF answer $=0.810(\mathrm{~g})$ award 4 marks $\begin{aligned} & {\left[\mathrm{H}^{+}\right]=10^{-12.500}=3.16 \times 10^{-13}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\checkmark}} \\ & {\left[\mathrm{OH}^{-}\right]=\frac{K_{w}}{\left[\mathrm{H}^{+}\right]}=\frac{1.00 \times 10^{-14}}{3.16 \times 10^{-13}}=0.0316\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)} \\ & n(\mathrm{RbOH})=0.0316 \times \frac{250}{1000}=7.91 \times 10^{-3}(\mathrm{~mol}) \checkmark \\ & \text { mass RbOH }=7.91 \times 10^{-3} \times 102.5=0.810(\mathrm{~g}) \checkmark \end{aligned}$	4	Always ALLOW calculator value irrespective of working as number may have been kept in calculator. ALLOW alternative approach using pOH : $\mathrm{pOH}=14.000-12.500=1.500 \checkmark$ $\left[\mathrm{OH}^{-}\right]=10^{-1.500}=0.0316 \checkmark$ ALLOW ECF from $\left[\mathrm{H}^{+}\right]$derived using K_{w} and $\left[\mathrm{OH}^{-}\right]$ BUT DO NOT ALLOW an acid pH. ALLOW 0.81 g , up to calculator value but take care as

Question		Answer	Marks	Guidance
				rounding could be from any stage Last 3 SF figure is zero and is treated as a 'trailing zero' as specific number of SF has not been asked for
(c)		Element oxidised: sulfur/S 0 to $+6 \checkmark$ Element reduced: \quad nitrogen/N +5 to $+4 \checkmark$ $6 \mathrm{HNO}_{3}+\mathrm{S} \rightarrow 6 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$ Correct species \checkmark Balance \checkmark	4	ALLOW 5+, 4+ and 6+ Signs required $\text { ALLOW } 4 \mathrm{H}^{+}+6 \mathrm{NO}_{3}^{-}+\mathrm{S} \rightarrow 6 \mathrm{NO}_{2}+\mathrm{SO}_{4}{ }^{2-}+2 \mathrm{H}_{2} \mathrm{O}$
		Total	13	

Question			Answer	Marks	Guidance
21	(a)		$\begin{aligned} & \text { Cr: } \quad\left(1 s^{2} 2 s^{2} 2 p^{6}\right) 3 s^{2} 3 p^{6} 3 d^{5} 4 s^{1} \checkmark \\ & \mathrm{Cr}^{3+}:\left(1 s^{2} 2 s^{2} 2 p^{6}\right) 3 s^{2} 3 p^{6} 3 d^{3} \checkmark \end{aligned}$	2	ALLOW 4s before 3d, ie $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} 3 d^{5}$ ALLOW $1 s^{2}$ written after answer prompt (ie $1 \mathrm{~s}^{2}$ twice) ALLOW upper case D, etc and subscripts, e.g. $4 \mathrm{~S}_{1} 3 \mathrm{D}_{5}$ ALLOW for $\mathrm{Cr}^{3+} \ldots \ldots4 \mathrm{~s}^{0}$ DO NOT ALLOW [Ar] as shorthand for $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$ Look carefully at $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}-$ there may be a mistake
	(b)		Formula of complex ion J Structures show correct ligands ($4 \mathrm{NH}_{3}$ AND 2 Cl) AND 1+ charge (on at least one structure) NOTE: For each structure, bonding from Co must be to \mathbf{N} of NH_{3} cis and trans labels required for both structure marks. If structures are correct but labels are wrong way round or omitted, award 1 out of the 2 stereoisomer marks	3	FULL ANNOTATIONS MUST BE USED For two stereoisomer marks, IGNORE charges (anywhere) Charge already credited within the 1st mark. Square brackets NOT required Must contain 2 'out wedges', 2 'in wedges' and 2 lines in plane of paper OR 4 lines, 1 'out wedge' and 1 'in wedge': For bond into paper, ALLOW: ALLOW following geometry throughout:

Question		Answer	Marks	Guidance
		TAKE CARE: structures may be in different orientations.		
(c)	(i)	$\mathrm{A}: \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ B: MnI_{2} State symbols not required in equations (within observations). C: $\mathrm{Cr}^{3+}+3 \mathrm{OH}^{-} \rightarrow \mathrm{Cr}(\mathrm{OH})_{3}$ D: $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+6 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}+6 \mathrm{H}_{2} \mathrm{O} \checkmark$ $\mathrm{E}: \mathrm{Mn}^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Mn}(\mathrm{OH})_{2} \checkmark$ $\mathrm{F}: \mathrm{Ba}^{2+}+\mathrm{SO}_{4}^{2-} \rightarrow \mathrm{BaSO}_{4} \checkmark$ $\mathbf{G}: \mathrm{Ag}^{+}+\mathrm{I}^{-} \rightarrow \mathrm{AgI} \checkmark$	7	Formulae required in question IGNORE incorrect names IGNORE incorrect state symbols $\text { ALLOW }\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{OH}^{-} \rightarrow \mathrm{Cr}^{-}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}+3 \mathrm{H}_{2} \mathrm{O}$ ALLOW $\mathrm{Cr}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}+6 \mathrm{NH}_{3} \rightarrow$ $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}+3 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{OH}^{-}$ ALLOW $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow$ $\mathrm{Mn}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}+2 \mathrm{H}_{2} \mathrm{O}$
	(ii)	removes/reacts with carbonate/ $\mathrm{CO}_{3}{ }^{2-}$ AND carbonate forms a (white) precipitate \checkmark	1	Both statements required for the mark Note: 2 nd statement can be for Test $2\left(\mathrm{Ba}^{2+}\right)$ OR Test $3\left(\mathrm{Ag}^{+}\right)$
	(iii)	Test 2: no difference \checkmark	3	

Question		Answer	Marks		
Test 3 gives a white precipitate by reaction with Cl' \checkmark AND B: white/yellow ppt OR cream ppt OR paler yellow ppt \checkmark	Guidance				
	(iv)	Add concentrated ammonia/ NH_{3} AND yellow precipitate does not dissolve \checkmark	$\mathbf{1}$	Concentrated essential for NH_{3}	
			Total	$\mathbf{1 7}$	

