www.tutorzone.co.uk

Mark schemes

1	(a)	(i)	Filtration	1	
		(ii)	Chlorine		
		()		1	
	(b)	(i)	nanoparticles are small / smaller / much smaller / tiny		
			allow any in range 1−100 nm or 1 × 10 ⁻⁹ m − 1 × 10 ⁻⁷ m or a few hundred atoms in size		
			ignore numbers if stated smaller		
				1	
		(ii)	they have a high surface area to volume ratio		
			reference to surface area without volume ratio is insufficient		
			allow nanoparticles are very reactive or nanoparticles are more		
			reactive than normal particles.	1	
	(c)	(sod	ium hydroxide) produces a white precipitate		
	(0)	(000	accept solid / suspension or ppt or ppte for precipitate.		
			ignore cloudy / milky		
				1	
		whic	ch (then) dissolves / disappears (in excess sodium hydroxide)		
			M2 cannot be awarded unless a solid of some sort has been made		
			ignore names or formulae of compounds	1	
				[6]
	(a)	(i)	giant lattice		
2	()	(-)	allow each carbon atom is joined to three others		
				1	
			atoms in graphene are covalently bonded		
			max. 2 marks if any reference to wrong type of bonding		
				1	
			and covalent bonds are strong or need a lot of energy to be broken		
			allow difficult to break	1	
				1	
		(ii)	because graphene has delocalised electrons		
			allow each carbon atom has one free electron	1	
			which can make throughout the attracture	_	
			do not accept just electrons can move		
				1	

[7]

	(b)	beca	ause there are weak forces between molecules	www.tutorzone
			allow no <u>bonds</u> between the layers	1
			so layers / molecules can slip / slide.	1
3	(a)	(i)	high	1
		(ii)	hundred	1
	(b)	hard		1
	(c)	(i)	carbon	1
		(ii)	four	1
		(iii)	covalent	1
		(iv)	all	1

[7]

1

(a) (i) any two from:

4

ignore any conclusion drawn referring to data below 7.5 nm or above 20 nm

100% of (type 1 and type 2) bacteria are killed with a particle size of 7.5 to 8.5 nm

accept nanoparticles in the range of 7.5 to 8.5 nm are most effective at killing (type 1 and type 2) bacteria

- as the size increases (beyond 8.5 nm), nanoparticles are less effective at killing (type 1 and type 2) bacteria
- type 1 shows a linear relationship **or** type 2 is non-linear
- type 1 bacteria more susceptible than type 2 (at all sizes of nanoparticles shown on the graph) allow type 2 bacteria are harder to kill
- (ii) (yes) because you could confirm the pattern that has been observed allow would reduce the effect of anomalous points / random errors allow would give better line of best fit ignore references to reliability / precision / accuracy / reproducibility / repeatability / validity

or

(no) because trend / conclusion is already clear

(b)	magnesium loses electron(s)	1
	oxygen gains electron(s)	1
	two electrons (per atom)	1
	gives full outer shells (of electrons) or <i>eight electrons in highest energy level</i> reference to incorrect particles or incorrect bonding or incorrect structure = max 3	1
	or	
	(electrostatic) attraction between ions or forms ionic bonds <i>accept noble gas structure</i>	

a layer a few hundred atoms thick (a)

5

[7]

(b) any **two** from:

any two ideas

- less materials or save resources
- less energy
- less fuel
- less pollution / greenhouse effect / global warming
- less waste
 ignore references to cost / recycling

6

7

2 [3] (i) In suntan creams (a) 1 (ii) Much smaller 1 (b) (i) have a high surface area to volume ratio 1 (ii) because a catalyst provides an alternative / different pathway / mechanism / reaction route accept adsorption or 'increases concentration at the surface' ignore absorption 1 (that has) lower activation energy allow weakens bonds allow idea of increased successful collisions max 1 mark for incorrect chemistry eg increased energy of particles 1 [5] mention of molecules / intermolecular / ionic / covalent = max 2 (a) (i) atoms / positive ions

1

1

1

any two from:

- (atoms / positive ions) in regular pattern / lattice / layer / giant structure (or diagram)
- delocalised electrons accept electrons move within / through the structure allow free (moving) electrons allow sea of electrons
- (atoms / positive ions) held together by strong / electrostatic attractions allow strong (metallic) bonds
- (ii) delocalised electrons accept electrons move within / through the structure allow free electrons
- (b) (i) smaller / very small
 - accept converse accept 1 - 100 nanometres in size accept a few hundred atoms accept larg<u>er</u> surface area **or** large surface area for their size
 - (ii) nanoparticles / more can fit into (tiny) gaps allow nanosize particles have large(r) surface area

[6]

8	(a)	79			1
		79			1
	(b)	hun	Ired		1
	(c)	(i)	electron(s)		1
		(ii)	three		1
					-

1

1

1

[8]

(d) changes rate of reaction

accept lowers activation energy

or

speeds up / slows down reaction accept reduces costs

- (e) (i) melt
 - (ii) crosslinking *allow answers on diagram*

or

(covalent) bonds between polymers / chains allow bonds between layers do **not** allow intermolecular

(a) because calcium is +2 and hydroxide is -1 accept to balance the charges

or

9

to make the compound neutral (in terms of charges) allow calcium needs to lose 2 electrons and hydroxide needs to gain one electron

(b) particles of size 1-100 nm

allow clear comparison to 'normal' size particles

or particles with a few hundred atoms / ions

or particles with a high surface area (to volume ratio)

or as different properties to 'normal' size particles of the same substance

(c) $M_r CaO = 56$ and

 $M_r Ca(OH)_2 = 74$

1

		2/56 (x74) or 0.036 (x74) or	www.tutorzone.co).uk
		allow ecf from step 1		
		74/56 (x2) or 1.3(214) (x2)	1	
		2.6(428) in range 2.6 to 2.96 correct answer with or without working gains 3 marks allow ecf carried through from step 1 ignore final rounding to 3	1	[5]
10	(a)	carbon	1	
	(b)	each atom is joined to four other atoms	1	
		It has a giant structure	1	
	(c)	very small	1	[4]
11	(a)	(i) increase	1	
		(ii) energy is given out to the surroundings	1	
	(b)	(i) NO allow 2NO ignore nitrogen oxide do not allow equations	1	
		 (ii) harmful / poisonous (owtte) allow dangerous ignore reference to pollution / global warming do not accept references to ozone layer 	1	
	(c)	a catalyst can speed up a chemical reaction	1	

1

1

1

1

[8]

- (d) (i) small<u>er</u> *accept less / tiny / very small allow 10⁻⁹ do not allow small unless qualified*
 - (ii) reduce cost (owtte) **or** *ignore references to energy*

save resources / raw materials (owtte)

12

(a) gives out heat / energy *allow release / loses allow the products have less energy*

or

(b)

energy / heat transferred to the surroundings ignore temperature rises allow more energy given out in forming bonds than taken in to break bonds

- speed up the reaction (owtte)

 accept changes the rate
 accept lowers activation energy
 accept increases <u>successful</u> collisions
 accept allows reaction to take place at a lower temperature
 - (ii) nitrogen (N₂) / oxygen (O₂) / products are safe or not harmful / pollutant / toxic / dangerous / damaging
 ignore releases nitrogen / oxygen unless qualified

or

(harmful) nitrogen monoxide / NO is not released into the air. accept prevents / less acid rain ignore greenhouse gas / ozone layer

(iii) 2 and 2 accept correct multiples or fractions 1 (iv) idea of catalyst not being used up allow not changed by reaction ignore catalyst does not take part ignore catalyst not used in the reaction 1 (v) idea of different reactions (require different catalysts) accept catalysts work for specific reactions allow different gases 1 (C) smaller / very small / or any indication of very small / 1-100 nanometres / ٠ a few (hundred) atoms ignore just small ignore size of the converter 1 big(ger) surface area 1 less (catalyst) needed / small amount of catalyst needed 1

(a) kills <u>bacteria</u>

allow destroys bacteria ignore attacks / reacts with bacteria ignore 'traps the smell'

or

stops growth of <u>bacteria</u> ignore microbes

(b) smaller / very small / tiny

assume they are referring to nanoparticles unless they state otherwise accept 1 - 100nm in size accept a few hundred atoms in size accept normal size particles are (much) larg<u>er</u> 1

[9]

1

1

(c) any **one** from:

•

- big(ger) surface area
 - react fast(er) accept more reactive ignore kill faster
- (d) so they do not get released during washing
 or so they do not get into rivers / ecosystem / environment

because this could harm fish / aquatic life	
or so the socks keep their odour-preventing properties (ow	∕tte)

[4]

(a)	the diameter of the tube is very small		
(b)	(i)	three	1
	(ii)	covalent	1
	(iii)	bonds	1

1

2

(a) any **four** from:

15

max **3** marks if any reference made to covalent / ionic bonding / molecules or intermolecular forces **or** graphite / diamond **or** forces of attraction between electrons and then ignore throughout

- giant structure / lattice ignore layers
- <u>positive</u> ions
- sea of electrons **or** delocalised / free electrons *ignore electrons can move*
- awareness of outer shell / highest energy level electrons are involved
- (electrostatic) attractions / bonds between electrons and positive ions
- bonds / attractions (between atoms/ ions) are strong allow hard to break for strong ignore forces unqualified
- a lot of energy / heat is needed to break these bonds / attractions
 ignore high temperature
- (b) (i) that they are <u>very</u> small accept tiny / really small / a <u>lot</u> smaller /

accept tiny / really small / a <u>lot</u> smaller / any indication of very small eg microscopic, smaller than the eye can see

or

- 1–100 nanometres **or** a few (hundred) atoms ignore incorrect numerical values if very small is given
- (ii) any **2** from:
 - one (non-bonded) electron from each atom
 - delocalised / free electrons
 allow sea of electrons
 ignore electrons can move
 - electron carry / form / pass current / charge
 ignore carry electricity

[7]

1

- (a) Stops / reduces air from escaping (owtte)
 allow keeping shape or keeping it hard
- (b) a layer a few hundred atoms thick
- (c) any **two** from:

16

- last longer
- use fewer balls
- less materials or save resources
- less manufactured
 accept less factories
- less energy
- less fuel
- less pollution / greenhouse effect / global warming
- less waste

1-100 nm in size

ignore references to cost / recycling any **two** ideas

2

1

[4]

17 ^(a)

or

a few (hundred) atoms in size

accept<u>very</u> / <u>really</u> small / tiny **or** 10⁻⁹ accept billionth of a metre **or** any number that implies very small accept measured in nanometers if answer 'very small' ignore incorrect numerical values (b) any two from:

- less tennis balls need to be made
- tennis balls last longer **or** don't have to replace as often
- less materials / resources / fuel used up / saves resources accept saving materials
- less energy used **or** making tennis balls uses energy
 accept saving energy
- less pollution caused
 accept named pollutant
 accept global warming / greenhouse effect
- less waste
 eg fewer tennis balls going to landfill

[3]

(a) any one from:

- they are made of layers
 do **not** accept line / rows / lattice
- atoms / ions / particles / layers (of atoms) can slide over each other

(b) any **one** from:

- smaller / tiny **or** very small
 do **not** allow small alone
- correct size range 1 to 100 nanometres
- a few hundred atoms in size if they state smaller and give a size outside range ignore size if it is less than 20,000

1

(c) hard<u>er</u>

plus one from:

- so does not wear as quickly / erode as quickly ignore corrode
- less vulnerable to damage owtte harder to wear down = 1 mark
- because they have a high surface area to volume ratio

or

19

```
stronger (1)
```

plus **one** from: (1)

- less likely to break / do not break
 accept withstand pressure
- not as vulnerable to damage owtte
 harder and stronger alone gains 1 mark
- do not bend out of shape
- because they have a high surface area to volume ratio

(a) nanoparticles / they are small(er) accept 1–100 nm or a few atoms in size

so can easily pass through pores / skin / cell / membranes / arteries / veins / capillaries / into blood stream owtte

must be a comparative statement can be inferred from small<u>er</u> particles allow absorbed for pass through

1

1

(b) any **one** from:

- may be toxic (to cells / specific cells)

 allow may harm / damage / kill cells / organs / tissues or may cause cancer
- to ensure safety or reduce risk or risk of litigation allow may cause allergies / side effects ignore harmful / dangerous unqualified eg harmful to body / people
- nanoparticles may have different properties
- to see if they pass into the body

1

- (c) any two sensible ideas from eg:
 - testing is expensive **or** testing costs money
 allow it costs money ignore litigation
 - testing is time consuming
 - don't see any reason to test since normal sized particles (of titanium oxide) do not cause harm

accept normal sun cream does not cause harm owtte

- don't want to risk not producing a popular product (owtte)
 eg if unsafe will have to stop production or have to remove product
 if toxic
- testing process / unfavourable results might cause alarm / reduce sales / reduce profit (less money)
- do not want to be seen doing animal testing

2

[5]