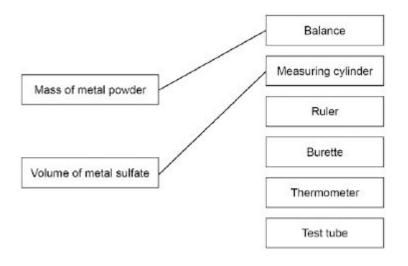
Mark schemes


- 1
- (a) Whether there was a reaction or not

1

(b) brown / orange / dark deposit on zincorblue solution turns colourless / paler

1

(c) Variable Measuring instrument

more than one line drawn from a variable negates the mark

2

(d) (Most reactive) Magnesium Zinc

(Least reactive) Copper

must all be correct

1

(e) would not be safe or

too reactive

allow too dangerous

1

(f) Gold

1

(g) $2\text{Fe}_2\text{O}_3$ + $3\text{C} \rightarrow 4\text{Fe}$ + 3CO_2 allow multiples

1

(h) carbon

1

1

(i) Loss of oxygen

[10]

(d) 9

,	(a)	any two from:	www.tutorzone.co.ul
2		 concentration / volume of dilute hydrochloric acid mass of metal powder surface area of metal powder stirring (of any) / rate of stirring allow reacted for the same length of time 	2
	(b)	4.2 °C	
		allow Magnesium Test 2	1
		and any one from:	
		 lower mass of magnesium added surface area of magnesium too low magnesium coated in magnesium oxide (so took a while to start read not stirred not stirred as quickly as the other metals not reacted for as long a time as the other metals allow reason for break in circuit 	cting)
	(c)	17.4(°C)	1
	(d)	bubbles of gas	1
		more (bubbles) seen with calcium than other metals allow any correct comparison between two metals	1
	(e)	any value between 7.9 °C and 12.3 °C	1 [8]
3	(a)	 there was a flame energy was given out a new substance was formed the magnesium turned into a (white) powder answers must be from the figure 	1
	(b)	Magnesium oxide	1
	(c)	The reaction has a high activation energy	

1

1

1

1

1

1

1

1

1

1

1

1

- (e) They have a high surface area to volume ratio
- (f) any **one** from:
 - Better coverage
 - More protection from the Sun's ultraviolet rays
- (g) any **one** from:
 - Potential cell damage to the body
 - Harmful effects on the environment
- (h) indication of $\frac{1}{1.6} = 0.625$

and

use of indices $10^{-9} - 10^{-6} = 10^3$

Both steps must be seen to score first mark

 $0.625 \times 1000 = 625$ (times bigger)

[9]

- 4 (a) (zinc has) lost electron(s)

 accept loss of electrons
 - (b) copper is the least reactive

because it gave the most negative voltage when it was metal 2

or

it gave the biggest voltage with chromium

or

it gave the most positive voltage when it was metal 1

(c) -0.7 V

The voltage with chromium and copper is 1.2

accept use of other cell pairings such as tin with copper and tin with iron

The voltage with chromium and iron is 0.5 and copper is less reactive (than iron)

- (d) hydrogen + oxygen = water
- (e) $H_2 \rightarrow 2H^+ + 2e^-$

Page 4 of 52

 $O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$

[9]

5

(a) (i) calcium oxide

in either order

1

1

carbon dioxide

accept correct formulae

1

(ii) $C(s) + CO_2(g) \rightarrow 2CO(g)$

allow multiples

1

(iii) 210 (tonnes)

award 3 marks for the correct answer with or without working

allow ecf for arithmetical errors

if answer incorrect allow up to 2 marks for any of the steps below:

 $160 \rightarrow 112$

 $300 \rightarrow 112 / 160 \times 300$

or

moles $Fe_2O_3 = 1.875 (\times 10^6)$ or 300 / 160

moles of Fe = 3.75 (\times 10⁶) or 2 \times moles Fe₂O₃

mass Fe = moles Fe × 56

105 (tonnes) scores 2 (missing 1:2 ratio)

420 (tonnes) scores 2 – taken M_r of iron as 112

	(b)	(i)	aluminium is more reactive than carbon or carbon is less reactive than aluminium	/ww.tutorzone.co.uk
			must have a comparison of reactivity of carbon and aluminium	
			accept comparison of position in reactivity series.	4
				1
		(ii)	(because) aluminium ions are positive	
			ignore aluminium is positive	1
				-
			and are attracted / move / go to the negative electrode / cathode	1
			where the consist of a twenty / and modern of / Al2.	
			where they gain electrons / are reduced / Al3+ + 3e ⁻ → Al	
			accept equation or statements involving the wrong number of electrons.	
				1
		(iii)	(because) the anodes or (positive) electrodes are made of carbon / graphit	e
				1
			oxygen is produced (at anode)	
				1
			which reacts with the electrodes / anodes	
			do not accept any reference to the anodes reacting with oxygen	
			from the air	
			equation $C + O_2 \longrightarrow CO_2$ gains 1 mark (M3)	1
				[13]
0	(a)	gold		
6	()	Ü		1
	(b)	atom	(s)	
				1
	(c)	(i)	protons	
			any order	
			allow proton	4
				1
			neutrons	
			allow neutron	1
		(::)	0 / Nove -	-
		(ii)	3 / three	1
	(4)	(i)	Al	
	(d)	(i)	ignore any numbers / charges	
			.go.o a, name.o, onalgoo	1

		(ii)	 any two from: limited resource expensive in terms of energy / mining effects on the environment, such as, landfill, atmospheric pollution, quarrying allow uses a lot of energy to extract. 	ww.tutorzone.co.	uk
	(-)			2	
	(e)	resis	stant to corrosion	1	
		does	s not react (with water or food)		
			allow one mark for low density with a suitable reason given	1 [10)]
7	(a)		ore is not pure or contains impurities or the ore does not contain 100% of the	metal	
			allow to concentrate the metal or metal compound	1	
		rock	a / other compounds need to be removed / separated	1	
	(b)	(i)	(cast iron is) brittle		
			allow not strong		
			ignore weak	1	
		(ii)	the oxygen reacts with carbon		
		()	allow carbon burns in oxygen or is oxidised		
				1	
			reducing the percentage of carbon in the mixture		
			or producing carbon dioxide	1	
	(c)	(i)	aluminium has a low density		
				1	
		(ii)	(because copper) is in the central / middle (block of the periodic table)	1	
			whereas aluminium is in Group 3 (of the periodic table)	1	
		(iii)	iron is more reactive (than copper)		
		. ,	ignore cost	1	
				1	
			so copper is displaced / reduced	1	
				[10)]

1

1

(a) any **one** from:

- solution becomes colourless or colour fades
- zinc becomes bronze / copper coloured

allow copper (forms) or a solid (forms)

zinc gets smaller

allow zinc dissolves

bubbles or fizzing.

ignore precipitate

(b) improvement:

use a plastic / polystyrene cup or add a lid accept use lagging / insulation

reason - must be linked reduce / stop heat loss

OR

improvement:

use a digital thermometer

allow use a data logger

reason - must be linked

more accurate or easy to read or stores data

allow more precise or more sensitive

ignore more reliable

ignore improvements to method, eg take more readings

(c) Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response. Examiners should also refer to the information in the Marking Guidance and apply a 'best–fit' approach to the marking.

0 marks

No relevant content

Level 1 (1-2 marks)

There is a statement about the results.

Level 2 (3-4 marks)

There are statements about the results. These statements may be linked or may include data.

Level 3 (5-6 marks)

There are statements about the results with at least one link and an attempt at an explanation.

Examples of chemistry points made in the response:

Description:

Statements

Concentration of copper sulfate increases Temperature change increases There is an anomalous result The temperature change levels off

Reaction is exothermic

Linked Statements

Temperature change increases as concentration of copper sulfate increases. The temperature change increases, and then remains constant. After experiment 7 the temperature change remains constant.

Statements including data

The trend changes at experiment 7 Experiment 3 is anomalous

Attempted Explanation

Temperature change increases because rate increases

Temperature change levels off because the reaction is complete

Explanation

As more copper sulfate reacts, more heat energy is given off Once copper sulfate is in excess, no further heat energy produced

[9]

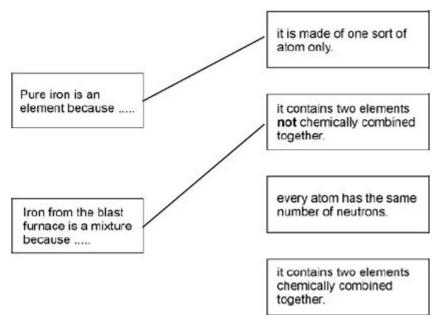
9 (a) (i) iron

either order

carbon dioxide

1

1


www.tutorzone.co.uk

1

(ii) reduced

Statemant (b) (i)

Explanation

each correct line gains 1 mark extra lines from statement negate the mark

max. 2

(ii) the layers / rows are distorted / disrupted or it doesn't occur in layers or the atoms are different

1

so cannot slide over one another or slide less easily

[7]

any three from: (a) 10

- concentration of (salt) solution
- volume of (salt) solution

ignore amount of solution

initial temperature (of the solution)

ignore room temperature

- surface area / form of metal
- moles of metal

allow mass / amount

ignore time

ignore size of tube

(b) 20

1

3

32

1

Page 10 of 52

		allow ecf	1
(c)	(i)	four bars of correct height	
		tolerance is + / - half square	
		3 correct for 1 mark	
			2
		bars labelled	
			1
	(ii)	one variable is non-continuous / categoric	
		accept qualitative or discrete	
		accept no values between the metals	
			1
	(iii)	magnesium	
	()	-9	1
		because biggest temperature change	
		accept gives out most energy	
		ignore rate of reaction	
		dependent on first mark	
			1
	(iv)	does not react / silver cannot displace copper	
	()	• • • • • • • • • • • • • • • • • • • •	1
		because silver not more reactive (than copper) or silver below copper in	
		reactivity series	
		do not accept silver is less reactive than copper sulfate	
			1
	(v)	replace the copper sulfate	
		could be implied	
			1
		with any compound of a named metal less reactive than copper	
		allow students to score even if use an insoluble salt	
			1 [16]
			[10]
(a)	pure	copper is twice as good a conductor as 99% pure copper	
		accept reverse argument	

(a) pure copper is twice as good a conductor as 99% pure copper accept reverse argument accept answers quoting 2 correct values from the graph scores 2 qualitative answer (e.g. pure copper is a better conductor than impure copper) scores 1

or

answers quoting a conductivity value from the graph scores 1

(b) Marks awarded for this answer will be determined by the Quality of Communication (QC) as well as the standard of the scientific response.

0 marks

No relevant content

Level 1 (1–2 marks)

Simple list of a limited number of points given, with no linking between ideas

Level 2 (3–4 marks)

A broader set of points made. There will probably not be links between ideas

Level 3 (5-6 marks)

Answer includes linking between ideas, showing the consequence of either not recycling or the advantage of recycling. Answers such as less fossil fuel needed so less carbon dioxide produced or less carbon dioxide produced so less global warming

examples of the points made in the response

resources

(recycling) conserves supplies of ores

copper available for longer

as (at present rate of use) copper ores will run out in about 35 years

(recycling) conserves supplies of fossil fuels or energy

less fuel used at a lower cost

land pollution

mining scars landscape or produces noise pollution mining destroys wildlife habitats

(recycling) less need to mine ores / fossil fuels

so less habitat destroyed or less scarring of landscape

(recycling) less need to use landfill for waste

atmospheric pollution

burning fossil fuels produces carbon dioxide / greenhouse gas which (may) cause global warming or climate change

extraction produces sulfur dioxide

which causes acid rain

which can kill trees / fish

(c) grow plants

accept plants absorb copper (through roots)

then plants are burned

ash (from burning) contains copper compounds

[11]

1

1

(i) (a)

12

economical

	(ii)	phytomining	www.tutorzone.co.uk
	()	p.,,	1
	(iii)	carbon dioxide	
			1
(b)	(i)	copper / Cu	
			1
		iron sulfate / FeSO ₄	1
	(ii)	copper / ions have a positive charge	-
	(11)	it = copper ions	
		allow copper ions have a different charge	
		accept copper / ions are free to move	
		accept to gain electrons	
		accept copper / ions are attracted to the negative electrode or	
		opposite charges attract	1
(c)	anv	two from:	
(0)	апу	ignore not biodegradable or does not decay	
	•	copper ores are limited / running out	
		allow copper is running out	
	•	copper can be recycled	
	•	copper can be reused copper is expensive	
	•	landfill sites are filling up	
	•	copper compounds are toxic	
		allow copper is toxic	
			2 [8]
	<i>(</i> 1)		[0]
(a)	(i)	Positive impact	
		any one from:	
		• provides employment or	
		improves local economy	
		improved transport - new roads are built, new rail links	
		after use the quarry could provide recreation facilities	

less carbon dioxide is produced

		any one from:				
		destruction of animal habitats				
		fewer plants and trees to absorb carbon dioxide				
		 visual pollution or noise pollution or atmospheric / air pollution allow dust pollution 				
		more traffic				
		uses non-renewable resources allow pollutants from burning diesel	1			
	(ii)	economical	1			
(b)	carb	oon / coke burns (in oxygen / air) accept carbon / coke reacts with oxygen / air	1			
(c)	(i)	iron oxide (reactant) must be words	1			
		carbon dioxide (product)	1			
	(ii)	reduction	1			
(d)	(i)	oxygen reacts with carbon				
		or				
		oxygen and carbon produce carbon dioxide / carbon monoxide				
		carbon dioxide / carbon monoxide is a gas				
		or				
		the carbon is removed as a gas	1			
	(ii)	much harder	1			
(e)	Adva	dvantage:				

		Disa	dvantage:		
		there	e are different types of steel which must be sorted	4	
				1	[12]
14	(a)	(i)	copper / Cu	1	
		(ii)	50 (p)	1	
		(11)	30 (β)	1	
		(iii)	25	1	
		(iv)	tin	1	
		(10)		1	
	(b)	any	one form:		
		•	high cost of <u>copper</u> allow <u>metal</u> is expensive		
		•	less copper available or (copper ores exhausted / only low-grade ores available) allow <u>copper</u> is non-renewable		
			high demand for copper		
		•	high percentage (%) of copper in the coin		
		•	inflation (of cost)	1	[5]
4 =	(a)	(i)	aluminium oxide		
15			ignore (III) after aluminium	1	
		(ii)	(because it provides) heat / energy (to overcome activation energy)	1	
	(b)	(i)	contains only one sort of atom	1	
		(ii)	the atoms (in cast iron) are different sizes any mention of molecules, maximum 1 mark		
			accept layers are distorted or structure is disrupted	1	
			which prevents the <u>layers / rows</u> sliding		
			accept an answer in terms of pure iron being softer than cast iron for both marks		
				1	

1

1

1

1

1

(c) (i) because aluminium is more reactive than carbon

'it' = aluminium must be a comparison between the elements

or

because aluminium is above carbon in the reactivity series

do not accept any comparison of the reactivity of aluminium and iron

(ii) reduces / lowers the temperature for the process **or** lowers the operating temperature **or** allows ions to move

ignore any temperature values allow reduces the (effective) melting point (of Al_2O_3)

(iii) 3

accept multiples

(iv) electrons are gained (by Al³+)

ignore any numbers

ignore any reference to oxygen

(v) electrodes are made of carbon allow graphite / coke

oxygen is produced (at the positive electrode / anode)

accept $2O^{2-} \rightarrow O_2 + 4e^-$

so the electrodes react with the oxygen / are oxidised

producing carbon dioxide (gas) accept $C + O_2 \rightarrow CO_2$ for marking points 3 and 4.

 $_2$ ightarrow CO $_2$ for marking points 3 and 4. $_1$ [13]

(a) (i) any **two** from:

16

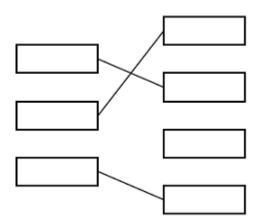
- bubbles / effervescence / fizzing ignore hydrogen / gas produced
- lithium disappears / gets smaller

 allow dissolves

 do **not** allow melts / burns
- lithium moves on the surface of the water ignore floats
- (universal indicator) turns blue / purple

	(ii)	2	vw.tutorzone.co.ul
		left-hand side correct	1
		2	
		right-hand side correct	
		allow multiples for full credit	1
	(iii)	light / burn, which will give a (squeaky) pop / explosion	
			1
	(iv)	all have 1 electron in their outer shell / energy level	
	` ,	allow have the same number of electrons in their outer shell / energy level	
		energy rever	1
(b)	They react with oxygen		
(b)	rney	y react with oxygen	1
			-
	They	y have low melting points	
			1
(c)	(i)	electronic structure [2,8,8] is drawn	
		incomplete inner shells scores a maximum of 1 mark	
			1
		charge is +	
		allow [2,8,8]+ for 1 mark	1
	(ii)	because (in potassium) the outer shell electron is further away from the nucl or because potassium atoms are larger than sodium atoms	eus
		it should be clear that the candidate is referring to the outer shell	
		electron: if this is not clear a maximum of 2 marks can be awarded	
			1
		therefore the outer shell electron is less strongly <u>attracted</u> to the nucleus or more shielded from the <u>attraction</u> of the nucleus and so the outer shell electron potassium is more easily lost	

3 marks can be scored for answering the question in terms of sodium


1

1

[13]

(a)

one mark for each substance linked correctly to its description do **not** accept more than one line from each substance

(b) 0 / zero / none / no charge

electron

(c) (i) nucleus

(ii) atomic number

(iii) mass number

[8]

1

1

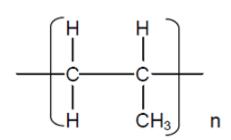
1

3

1

1

1


1

18

(a) (i) ethene

allow C₂H₄

(ii)

accept line drawn from word 'Monomer' or from the monomer box to the correct 'Polymer'

allow the correct 'Polymer' indicated by a tick, circled etc.

(b) (i) nickel

accept Ni

Page 18 of 52

	(ii)	75(%)	www.tutorzone.co.u		
	()	1 3 (73)	1		
	(iii)	(stainless steel) is hard /strong / durable it = stainless steel			
		accept (pure) iron is soft	1		
		(stainless steel) resistant to corrosion or unreactive accept (pure) iron rusts / corrodes / reacts			
		do not allow corrosive	1		
(c)	Adv	antage: Conserves resources of crude oil and ores			
		do not allow more than one tick in the advantage column	1		
	Disa	advantage: High cost of separating materials			
		do not allow more than one tick in the disadvantage column	1 [8	8]	
(a)	any t	two from:			
	•	copper / ores are running out / harder to find			
	•	there are no / very small amounts of high-grade copper ores left			
	•	copper metal is in demand			
	•	copper is expensive			
	•	now economical to extract copper from low-grade ores it = copper			
		allow new methods of extraction e.g. bioleaching and phytomining allow high-grade ores are running out for 2 marks	2		
(b)	(i)	large amounts / 98% of rock to dispose of as waste accept contains toxic (metal) compounds / bioleacher			
		or			
		waste rock takes up a lot of space	1		

		(ii)	(copper sulfide reacts with oxygen to) produce sulfur dioxide / SO ₂ allow (sulfur reacts with oxygen to) produce sulfur dioxide / SO ₂	ww.tutorzone.co.uk
			that causes acid rain	1
			allow description of effects of acid rain or sulfur dioxide if no other mark awarded allow CO_2 produced which causes global warming or CO_2 produced by burning fuel or heating the furnace for 1 mark	
		(iii)	any one from:	1
			• <u>large</u> amounts of fuels / energy used (for the furnace and electrolysis allow <u>large</u> amounts of electricity needed ignore high temperature / electrolysis unqualified)
			• (the extraction has) <u>many</u> steps / stages / processes allow (extraction) is a long process / takes a lot of time	
			large amounts of ore / material have to be mined allow ores contain a low percentage of copper	1
		(iv)	(copper ions move towards) the negative electrode / cathode	1
			because copper ions / Cu ²⁺ are positively charged or are oppositely charge copper ions need to gain electrons	d or
			allow because metal ions are positive or opposites attract	1
		(v)	(growing) plants	1 [9]
20	(a)	(i)	2.8.3 any sensible symbol can be used to represent an electron	1
		(ii)	proton(s) and neutron(s) both needed for the mark	1
		(iii)	number of protons is equal to number of electrons allow positive and negative charges cancel out allow same amount of protons and electrons	
	(b)	(i)	2 Al + Fe ₂ O ₃ \rightarrow 2 Fe + Al ₂ O ₃ equation must be balanced	1

[5]

		(ii)	aluminium is more reactive (than iron) it = aluminium accept converse accept aluminium displaces iron accept aluminium is higher in the reactivity series (than iron)	www.tutorzone.
21	(a)	any (one advantage from:	
21		•	conserves resources (of crude oil / metal ores) ignore can be made into other items allow the materials (in the pen) are non-renewable allow less expensive than producing from the raw material	
		•	reduces use of landfill ignore less waste	
		•	less use of fuels/energy	
		•	less carbon dioxide produced ignore global warming unqualified	1
		any	one disadvantage from:	
		•	made of different polymers / alloys / materials	
		•	difficulty / cost of separating the different materials allow not all the materials can be recycled	1
	(b)	har	d / strong / durable	1
		resis	stant to corrosion or unreactive allow do not rust do not allow corrosive	1
	(c)	(i)	vapours (of decane) ignore pressure / hot / heat allow high temperature (≥150 °C)	1
			passed over a catalyst or porous pot or aluminium oxide allow catalyst even if incorrectly named	

or

mixed with steam (1)

at a (very) high temperature (1)

if temperature quoted, must be ≥ 500 °C

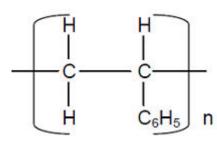
(ii) many monomers or many ethene molecules

1

join / bond

allow addition polymerisation for second mark

1


OR

monomers / ethene molecules (1)

form chains **or** very large molecules (1)

if no other mark awarded allow double bond breaks / opens up **or** double bond forms a single bond for **1** mark

(d)

allow bonds that do not extend through brackets

7 single bonds are used and are in the correct places with no additional atoms (1)

the brackets and the n are in the correct place (1)

[10]

22

(a) (i) current / charge couldn't flow

allow could not conduct (electricity)

1

2

because the ions / particles couldn't move

do **not** accept electrons/ molecules / atoms

or

(salt) needs to be molten / (1) dissolved (to conduct electricity)

so that the ions / particles can move (1)

do not accept electrons / molecules / atoms

www.tutorzone.co.uk (ii) he had status accept he had authority or experience or he had evidence / proof accept the experiment could be repeated 1 (b) hydrogen / H₂ do not allow hydrogen ions 1 the ions are positive accept because opposite (charges) attract 1 potassium is more reactive (than hydrogen) accept potassium ions are less easily discharged (than hydrogen) or potassium ions are less easily reduced (than hydrogen) 1 (c) (i) gain electron(s) accept fully balanced correct equation for 2 marks 1 one electron if no other marks awarded allow (potassium ions) reduced for 1 mark 1 $2 \text{ Cl}^- \rightarrow \text{Cl}_2 + 2e^-$ (ii) must be completely correct, including charge on electron accept correct multiples 1 2, 8, 8 (iii) accept any combination of dots, crosses, "e" or any other relevant symbol ignore any charges if given 1 [10] (a) (i) hydrogen accept H₂

allow H

	(ii)	hydroxide	www.tatorze	/10.00.t	
		accept OH ⁻ allow OH			
		do not accept lithium hydroxide		1	
(b)	any	two from:			
		'it' = potassium			
	pota	ssium:			
		accept converse for lithium			
	•	reacts / dissolves faster			
		allow reacts more vigorously / quickly / violently / explodes ignore reacts more			
	•	bubbles / fizzes faster			
		allow fizzes more			
		allow more gas			
	•	moves faster (on the surface)			
		allow moves more			
	•	melts			
		allow forms a sphere			
	•	produces (lilac / purple) flame			
		allow catches fire / ignites			
		do not accept other colours			
				² [4]
(a)	red	uction			
` ,			1		
(b)	carb	on is less reactive than aluminium			
			1		
(c)	alun	ninium (ions) / they are positively charged			
		they = aluminium ions			
		ignore particle names			
		accept aluminium (ions) / they are cations			

allow aluminium (ions they have an opposite charge

24

		so they are attracted or they move towards the negative electrode	
		OR	
		aluminium (ions) / they need to gain electrons (1)	
		which come from the negative electrode (1) if no other marks awarded allow 'opposites attract' for 1 mark	1
	(d)	aluminium has a low density	1
		aluminium is resistant to corrosion	1
	(e)	advantage less carbon dioxide is produced	1
		disadvantage used aluminium cans have to be collected and transported	1 [8]
25	(a)	(i) reduction accept redox / smelting	
		(ii) 3 4 3	1
	(b)	(i) 55	1
		ignore other units	
		(ii) Water accept sodium hydroxide accept correct formulae H₂O or NaOH	1
		(iii) any one from:	
		 save energy / fuel for transporting the ore accept less (cost of) transport allow transported quickly 	
		(old) quarries nearby for waste/red mud	1

(c)	Environmental	www.tutorzone.co.ul
	any one from:	
	less mining / quarrying (of bauxite) allow loss of habitat / less qualified noise pollution	
	less landfill space needed / used allow less red mud / waste	
	less use of fossil fuels / energy	
	less carbon dioxide produced	1
	Ethical or social	
	any one from:	
	saves resources allow using resources more than once	
	creates (local) employment if answers reversed and both correct award 1 mark	
	more people aware of the need for recycling allow less qualified noise pollution if not given in environmental	1 [7]
(a)	(iron (steel) is) strong allow abundant or easy to extract or cheap ignore other correct properties	
(b)	less dense allow low mass	1
		-

more abundant

accept copper is 'running out' allow copper is more expensive ignore other correct statements

(c) C_2H_4 (i)

> (ii) double bond

> > 1

1

1

1

1

1

1

1

(iii)	no	lν(et!	hei	ne)
١		,	PΟ	y۷	CL		10

[6]

27	
41	

- any **one** from: (a)
 - no method / electrolysis / equipment / technology allow 'didn't know how to' **or** 'no knowledge'
 - aluminium is a very reactive metal
 - high melting point allow 'couldn't heat it enough'
 - potassium had not been discovered

because others / scientists / they could not repeat the experiment (b) ignore he could not repeat the experiment

or

others / they could not obtain the same results

(c) reaction is endothermic or reaction takes in heat / energy

> accept activation energy ignore rate / high temperature ignore bonds broken

(d) (aluminium chloride + potassium) → aluminium + potassium chloride

in either order accept correct formulae ignore metal ignore balancing

when tested it had the properties of a metal (e) accept a test for a metal property eg conductivity / reaction with acid

properties were different (from other known metals) accept properties compared with other metals

[6]

allow correct balancing using Fe2

oxygen reacts with the carbon to produce carbon dioxide allow carbon monoxide for carbon dioxide

(iii)

(i)

(b)

reduction

accept redox

Page 28 of 52

1

1

1

[7]

	OR	www.tutorzone.co.u
	carbon dioxide is produced (1)	
	which escapes as a gas (1)	1
	(ii) to give steels with <u>different</u> / particular properties or for <u>different</u> / <u>particular</u> uses ignore to make different alloys	1
(c)	copper is very expensive accept the metal (iron / steel) costs less than copper	
	ignore energy	1
	because copper ores are 'low grade' / running out allow copper is rare	
	ignore nickel	1 [9]
(a)	(i) conducts electricity	
	(ii) <u>mix</u> ture (of metals)	1
(b)	(it = alloy) any two from:	1
(-)	ignore pollution without qualification	
	• noise	
	dust allow dirt	
	• traffic	
	• eyesore	2

(a)	(i)	low percentage / very little of metal (in the ore) accept only 0.5% metal in the ore or over 99% waste in the ore or nearly 100% waste in the ore	www.tutorzo
		ignore reference to percentage of metal in the Earth's crust or energy used or pollution	1
	(ii)	any one from (it = iron)	
		• iron uses less energy / fuel for extraction ignore electrolysis / uses electricity / reactivity	
		iron has more uses	
		 more demand for iron ignore high abundance in the Earth's crust / high percentage of metal in ore 	
		• iron is stronger ignore harder	
		cheaper / costs less	
		easier to extract	1
(b)	(i)	has <u>mel</u> ting point lower than 950°C (it = aluminium) allow has a low <u>mel</u> ting point ignore boiling point	
	(ii)	electrode(s) made of carbon	1
	\'' <i>)</i>	Sicoli Sacio, mado di Sandon	1

oxygen reacts with electrode(s) / carbon accept $C + O_2 (\rightarrow CO_2)$

NB oxygen reacts with the carbon electrode(s) = $\mathbf{2}$ marks

Page 30 of 52

[7]

		(iii)	any two from:	www.tu
			• saves resources / non-renewable accept aluminium / ore will run out or conserves aluminium	
			landfill problem accept aluminium does not corrode	
			saves energy / fuel / electricity ignore global warming	
			less carbon dioxide / carbon emissions or reduces carbon footpring ignore consequences of quarrying / mining	t
			• less quarrying / mining ignore pollution / harms environment / costs / easy to recycle	2
32	(a)	(i)	removal of oxygen accept definition in terms of electrons or oxidation numbers	
			ignore oxides	1
		(ii)	2 (Cl ₂) allow correct multiples	1
		(iii)	no atoms are lost / made (during a chemical reaction) or the stems are rearranged (during a chemical reaction)	
			the atoms are rearranged (during a chemical reaction) accept because of (the law of) conservation of mass / matter	1
	(b)	(i)	sodium is more reactive (than titanium) accept sodium is very reactive or titanium is less reactive	
			do not accept sodium is more reactive than argon	1

sodium / titanium would react with oxygen / air

sodium / titanium does not react with argon

accept argon is unreactive / inert / a noble gas / in group O

accept air / oxygen is reactive

(ii)

any one from:

				www.tutorzone.d	n uk
	(c)	(i)	all atoms are the same / it only contains one type of atom	www.tatorzone.c	JO.UK
			accept all ions are the same		
			do not accept only got one atom		
			do not accept all atoms are the same size		
			ignore particles		
				1	
		(ii)	two different / types atoms / elements / ions		
			accept more than one type of atom / ion / element		
			do not accept different size		
				1	
			bonded / joined together		
			accept definite proportions		
			do not accept mixture		
			do not accept mixture	1	
					[8]
	(-)	(de a la companya de		
33	(a)	(car	bon =) 1	1	
				-	
		(oxy	rgen =) 3	4	
				1	
	(b)	(i)	heated		
				1	
		(ii)	carbon dioxide		
				1	
	(c)	(i)	combustion		
	(0)	(.)		1	
		/ii\	earbon is more reactive than zing		
		(ii)	carbon is more reactive than zinc	1	
				-	
		(iii)	zinc boils (in the furnace / below 1300°C)		
			ignore melting point / changes of state	1	
				1	
			lead does not boil / (only) melts in the furnace / boils above 1300°C		
			if no other mark awarded allow zinc has a lower boiling point or		
			lead has a higher boiling point		
			or they / zinc and lead have different boiling points for 1 mark		
				1	[8]
					- 4

(a)	(i)	copper / Cu	1	
	(ii)	50(p)	1	
	(iii)	25	1	
			1	
	(iv)	tin	1	
(b)	(i)	any one from:		
		high cost of <u>copper</u> allow <u>metal</u> is expensive		
		• less <u>copper</u> available or (copper ores exhausted / only low-grade ores available)		
		allow <u>copper</u> is non-renewable		
		high demand for copper		
		high percentage (%) of copper in the coin		
		inflation (of cost)	1	
	(ii)	any one from:		
		• stronger / harder ignore rust		
		cost of copper or copper is more expensive to extract or steel is cheap allow cheaper (to make)		
		less copper available		
		or (copper ores exhausted / only low-grade ores available)		
		high demand for copper		
		less copper is needed	1	[6]

1

1

1

a)	(i)	С
		must be correct symbol
		do not accept carbon
		any balancing must be correct
	(ii)	Fe + CO ₂
	()	correct formulae
		2 + 3
		correct balancing
		allow $Fe_2 + 3CO_2$ for this mark
	(iii)	layers / atoms in pure iron are able to slide over each other
	()	it = pure iron
		accept ions for atoms
		ignore molecules / particles
		or

layers / atoms in cast iron are unable to slide over each other (easily)

(b)	any three from:	www.tutorzone.co.ul
	mention of ozone = max 2	
	less iron ore used accept the idea that ores would be conserved but not unspecified conservation	
	less other metals extracted / used to make different steels accept the idea that ores would be conserved but not unspecified conservation	
	less fuel used accept the idea that fuels would be conserved ignore reduces energy requirements	
	 less <u>specified</u> pollution accept global warming / greenhouse effect / CO₂ / CO / carbon emissions / acid rain / SO₂ / global dimming / do not accept ozone layer 	
	less / no landfill space needed ignore reduces waste	
	 less / no mining needed or fewer specified effects of mining accept effect such as eyesore / loss of habitat eg 'less mining iron ore' = 2 marks 	3 [7]
(a)	atoms	

1 (b) mixture 1 metal 1 structure 1 smart 1

(c)	(i)	any two from:	www.tutorzone.co.uk
		saves raw materials / iron ore	
		saves energy / fuels accept cheaper / saves money	
		make new / useful items	
		make money / it is economic	
		reduces pollution allow less harmful for the environment	
		decreases cost of steel cans	
		reduces carbon dioxide emissions	
		decreases waste materials / use of landfill	2
	(ii)	any one from:	
		provide information / education of the need to recycle	
		legislate against / charge for waste	
		reward / pay people to recycle accept fine people for not recycling	
		put labels on the cans	
		provide recycling bags / bins / areas	1 [8]

(a) conducts (electricity) **or**accept flexible

allows electrons / current to flow

ignore conducts heat

1

(b) electron

37

	(c)	(i)	lithium>copper>tungsten or	
			Li>Cu>W all correct allow 1 mark for one metal in the correct position	2
		(ii)	has high / highest melting point accept has high / highest boiling point	
			or	
			can withstand the highest temperature	1
	(d)	unre	eactive	1
				[6]
38	(a)	(i)	many ethene / molecules / monomers accept double bonds open / break	1
			join to form a long hydrocarbon / chain / large molecule accept addition polymerisation ignore references to ethane correct equation gains 2 marks	1
		(ii)	(can be deformed but) return to their original shape (when heated or cooled) ignore 'it remembers its shape'	
		(iii)	cross links / extra bonds in PEX accept inter-molecular bonds ignore inter-molecular forces	1
			molecules / chains in PEX are held in position accept rigid structure	1
			molecules / chains in PEX unable to slide past each other / move it = PEX throughout	1
				1

(b) any	four	from
---------	------	------

- less (hydrocarbon) fuels used allow less energy
- less / no electrical energy used allow no electrolysis
- reduce carbon / carbon dioxide emissions allow less global warming
- reduce / no pollution by sulfur dioxide / acid rain
- continuous process
 allow less / no transportation
- conserve copper which is running out or only low-grade ores available
- reduce the amount of solid waste rock that needs to be disposed allow less waste
- reduce the need to dig large holes (to extract copper ores)
 allow less mining
 ignore costs / sustainability / non-renewable

[10]

- (a) (an alloy) that can return to its original shape (after being deformed / bent / twisted) accept (on heating / cooling) it returns to its shape
- (b) any **two** from:

39

- brass / it is a <u>mixture</u>
 accept brass / it is not pure
- zinc changes structure / disrupts patterns or layers
- copper metal atoms / layers able to slide over each other accept zinc prevents atoms / layers sliding over each other

2

(c) (i) oxygen $/ O_2 / O$

1

(ii) lead remains (in furnace) because of its high boiling point

1

1

zinc boils / evaporates (out of furnace) because of its low boiling point 1 if neither mark awarded then allow $\bf 1$ mark for different boiling points

ignore references to melting points

[6]

40

- (a) any **one** from:
 - light(er) / less dense ignore stronger
 - resistant to acids / alkalis / chemical accept resistant to corrosion

1

(b) any **two** from:

it must be clear list principle applies allow reverse argument ignore reference to temperature

- magnesium is more reactive than titanium
 magnesium is above titanium in the reactivity series
- titanium is more reactive than carbon
- magnesium is <u>more</u> reactive than carbon
- magnesium is most reactive
- carbon is <u>least</u> reactive

(c) any three from:

it = titanium

ignore references to cost / easier / usefulness alone **or** references to incorrect processes

- takes a long time to process
- low abundance (of ore)
- · small amount produced
- batch process used or blast furnace is continuous
- more stages used to manufacture titanium allow ≥ 3 / many / several
- more energy used (per tonne of titanium)
 allow high energy requirement
 ignore references to temperature
- magnesium / chlorine is expensive
- labour intensive

[6]

- (a) (i) contain enough metal to make it economical / worth while to extract
- 1

3

(ii) reduction

41

accept displacement accept redox

1

(iii) Fe + CO₂

do not accept Fe2 / Fe4

1

correct balancing

accept multiples and halves

$$2\text{Fe}_2\text{O}_3 + 3\text{C} \rightarrow 4\text{Fe} + 3\text{CO}_2$$

allow $\text{Fe}_2 / \text{Fe}_4$ as ecf

(b) Pure Iron

(in pure metal all the atoms are the same size and) able to slip / slide over each other – (property soft)

OWTTE

ignore references to molecules / particles if they say 'move' both times, allow **one** mark but 'crack' or 'split' is wrong..

1

Cast iron

(in cast iron) different sized atoms / larger atoms **or** structure is distorted / disrupted *OWTTE*

1

so it is difficult for layers of atoms to slip / slide over each other $\ensuremath{\textit{OWTTE}}$

1

(c) any three from:

- conserves / saves resources / metal ores
- saves energy resources (used for extraction / processing)
 accept cheaper / saves money
- decreases waste materials
- decreases a named pollution do not accept acid rain

3

[10]

42

(a) (i) any **one** from:

- iron ore is a limited resource / non-renewable
- iron is in high demand
- provide jobs
- economic advantage

	(ii)	any two from:	www.tutorzone.co.ui
		would damage (wildlife) habitats / countryside / greenfield sites	
		extra traffic	
		visual (pollution) / eyesore	
		noise (pollution) / sound (pollution)	
		dust (pollution)	
		• river (pollution)	
		 carbon dioxide (from traffic) / adds to greenhouse effect / global warming 	
		damage roads / buildings by <u>vibrations / shockwaves</u>	2
(b)	(i)	carbon monoxide / carbon	
		accept formulae CO / C	1
	(ii)	atoms	
		accept (particles) are all the same (size) / type for one mark	1
		are all the same (size) / type	
	/:::\	any hura fram.	1
	(iii)	any two from:	
		• impurities / carbon / different (sized) atoms or elements or metals	
		changes the structure / disrupts the pattern or layers	
		prevents layers sliding over each other	
		• it is an alloy	2 [8]

(a)	(i)	Cu ₂ S + 2O ₂ ® 2CuO + SO ₂
		accept fractions and multiple

- (ii) any **two** from:
 - sulfur dioxide
 accept sulphur dioxide / sulphur oxide / SO₂
 - causes acid rain
 ignore other comments eg global warming / ozone / global
 dimming / greenhouse effect
 - consequence of acid rain eg kills fish / plants

2

- (b) any **two** from:
 - heat (copper oxide with carbon)
 - oxygen is removed by carbon accept copper (oxide) loses oxygen

or

carbon gains oxygen accept carbon oxide

or

carbon monoxide / carbon dioxide is produced

or

carbon displaces copper

accept a correct word or balanced

symbol equation

 because carbon is more reactive than copper allow a correct comparison of reactivity

2

(c) (i) electrolysis accept electroplating

1

(ii) (electrical) wiring / appliances / coins / pipes / cladding for buildings / jewellery / making alloys

1

or

named alloys

(d) any three explanations from:

for recycling

- less acid rain (pollution)
- copper reserves last longer / conserved

or

do not run out

energy for extraction (saved)

or

less energy required

- less mining / quarrying
- less waste (copper) / electrical appliances dumped

or

less landfill

against recycling

- collection problems
- transport problems
- difficult to separate copper from appliances
- energy used to melt the collected copper
 ignore electrolysis / pollution
 ignore ideas about less machinery / plant
 ignore idea of cost

[10]

44

(a) (i) 5(%)

1

3

(ii) 0.35

$$\frac{5}{10} \times 7$$

for 1 mark

does not bond ionically / covalently

45

[4]

1

(a)	(ver	y) small percentage / amount (in the Earth's crust) any indication that there is a small amount, eg not much (left) accept rare (elements) / rarer accept not commonly found ignore cannot find easily ignore hard to extract	www.tu
(b)	(i)	oxygen / O ₂ / O do not accept O ²	1
	(ii)	 any one from: potassium / K sodium / Na calcium / Ca magnesium / Mg symbols must be correct write name and incorrect symbol, ignore symbol 	
(c)	(i)	heating (with) or hot air blown into furnace	1

(c) (i) heating (with) **or** hot air blown into furnace accept high temperatures or (very) hot

carbon / carbon monoxide / coke / coking coal

do not accept coal / charcoal accept balanced equation only

or

carbon reacts with O_2 or carbon / coke burning (1) accept balanced equation only CO / CO_2

CO reacts with the ore (1)

for naming the reducing agent

		makes aluminium expensive (owtte) or (large amount of) electricity used or because you have to use electrolysis or aluminium is higher in the reactivity series or aluminium is harder to reduce or unable to reduce with carbon or the cost of purifying the bauxite do not accept harder to extract / produce more energy is not enough	1	
				[6]
	(a)	mixture		
47	(α)	no t compound		
			1	
		of a metal with other element(s) / metals		
		not of elements not of a metal with other substances		
			1	
	(b)	steel allow stainless steel		
		anow stairness steer	1	
	(c)	stronger / increased strength / harder / less malleable / less brittle		
		not corrosion / rusting	1	
	(d)	copper and zinc		
	()		1	[5]
48	(a)	gives out		
		heat		
		each for 1 mark	2	
	(b)	chromium and aluminium oxide	2	
	(D)	GITOTTIATT ATA AIATHITIATTI ONIAE	1	

	(c)	(i) chromium oxide	www.tutorzone	e.co.uk
	(0)	(i) Chromain oxide	1	
		(ii) oxygen removed/gains electrons	1	[5]
	(a)	lead oxide + carbon = lead + carbon dioxide		
49	(a)	(A symbol equation was accepted if correct)	1	
	(b)	oxygen removed (or addition of electrons)	1	[2]
50	(a)	unreactive / near bottom of reactivity series	1	
	(b)	carbon more reactive / higher up reactivity series	1	
	(c)	very reactive / near top of reactivity series	1	
		cannot use displacement methods / can only be extracted by electrolysis / ha to wait discovery of electricity	d 1	[4]
51	(a)	$Zn + 2HC 1 \rightarrow ZnC1_2 + H_2$	1	
	(b)	(i) 12.5	1	
		(ii) steeper curve same volume of gas evolved do not credit two intersects of straight lines accept a sharp bend		
		, ,	2	

((iii)	any two from:	www.tutorzone.co.u
		stir it	
		accept mix it better	
		heat it accept warm it	
		use a more finely divided catalyst accept use a better catalyst or more finely divided zinc do not credit use acid of a higher	2
(c) ((i)	any one from	
		zinc is more reactive than copper accept zinc is above copper in the reactivity series	
		zinc displaces copper accept it is higher than copper in the reactivity series	1
((ii)	zinc + copper sulphate → copper + zinc sulphate ignore the presence of acid or water accept a balanced equation	1 [8]
(a)	(i)	rings of 2, 8 and 3 electrons	
		credit 2, 8, 3 pay particular attention to the outer shell in diagrams	1
((ii)	rings of 2, 8 and 7 electrons credit 2, 8, 7 pay particular attention to the outer shell in diagrams	1

1

1

1

1

1

1

1

1

'I \	/•\
n۱	/11
b)	(i)
~ ,	١٠,

labels not required on atoms charges need to be shown on ions reference to outer shell is required otherwise a maximum of two marks

structure of atoms/ions marks

(ring of 2, 8, 1 for sodium) or the outer shell of sodium only contains 1 electron credit 2, 8, 1 or an ion 2, 8 or two circles and 1 electron in outer shell

(ring of 2, 6 for oxygen) or outer shell only contains 6 electrons credit 2, 6 or an ion 2, 8 or two circles

transfer of electrons mark

two sodiums needed to supply two outer electrons to oxygen to complete the (one oxygen's) outer shell

award maximum of two marks if a covalent structure is given credit two rings of electrons for sodium showing outer electrons transferring to outer shell of one oxygen for three marks do not accept diagrams showing overlapping rings for third mark

loses an electron (ii)

> credit atoms lose electrons or oxygen takes the electron ignore oil rig

> > [6]

53

(a) This part was not marked

electrolysis (b)

> because calcium is more reactive (than aluminium **or** carbon) accept it is more reactive

or very reactive

OR

in a blast furnace

because calcium is less reactive (than carbon **or** lower)

Page 50 of 52

(c) any equation from

1 mark for correct formulae1 mark for balancing

$$2ZnO + C \rightarrow 2Zn + CO_2$$

$$ZnO + CO \rightarrow Zn + CO_2$$

$$ZnO + C \rightarrow Zn + CO$$

[5]

(i) idea that:

carbon is above lead in the reactivity series } NOT

for 1 mark

carbon is below aluminium in the reactivity series } OXIDE

for 1 mark

carbon can remove oxygen from/reduce lead <u>oxide</u> or cannot remove oxygen from aluminium <u>oxide</u> not aluminium more reactive than lead

for 1 mark

OR similar ideas in comparing bond strengths

3

2

(ii) (carbon + lead oxide) →*lead + *carbon dioxide each for 1 mark

accept correct formulae CO_2 and CO **NOT** carbon oxide

[5]

55 (a) hydrogen

for 1 mark

1

1

(b) oxygen

for 1 mark

[2]

correct use of 'react'/'reaction'/reactants'/combine (not mixed/added/join) correct use of 'produce'/'products'/gives/forms/makes/creates reactants correctly identified

each for 1 mark

products correctly identified
(Reactants must be correctly identified for 'react'
mark to be awarded. Similarly for products)
(magnesium reacts with zinc oxide to produce magnesium
oxide and zinc or similar, will gain all 4 marks)
Oxidise or reduce given correctly can be credited both
the marks for react and produce

[4]

- (a) ideas that it is a
 - compound of metal/metal oxide/combined (NOT mixed) cpd/ named cpd O²⁻/S²⁻/CO₃²⁻ etc
 - found naturally/in rocks/in Earth's Crust for 1 mark each

(b) reduction (accept smelting/refining but <u>not</u> electrolysis)

for 1 mark

1

2

(c) One example. All or above in Reactivity Series ie Group I or II metals NOT Pb/Cu or compounds for 1 mark

1

[4]