Question 5					
(a)	(i)	$\left(a = \frac{F}{m}\right) = \frac{(-)30(000)}{15100} \checkmark = (-) 2.0 (= 1.99 \mathrm{m s}^{-2}) \checkmark$			
(a)	(ii)	$(v = u + at) t = \frac{v - u}{a}$ or substitution $\checkmark = \left(\frac{150 - 2040}{-1.99}\right) = 950 \text{ (s) } \checkmark \text{ ecf from (i)}$	2		
(b)	(i)	opposing vertical arrows of roughly equal length or labelled weight/mg/gravity/W and thrust/reaction/R/F/TF/engine force/rocket force/motor force/motive force/driving force ✓ correctly labelled + arrows vertical + not more than 2 mm apart + roughly central + weight arrow originates within rectangular section and thrust originates within rectangular section or on jet outlet ✓	2		
(b)	(ii)	new mass = 15100 × 0.47 = 7097 (kg) ✓ (F = mg = 7097 × 16(1)) = 11000 (= 11426 N) ✓			
(c)		$(v^2 = u^2 + 2as \ v = \sqrt{0.80^2 + 2 \times 1.61 \times 1.2})$ correct u , a and s clearly identified \checkmark = 2.1 (= 2.122 m s ⁻¹) \checkmark			
	Total				

G481 Mark Scheme January 2009

	Question		Expected Answers	Marks	Additional Guidance
3	(a)		(Force is 1 N) when a 1 kg mass has an acceleration of 1 m s ²	B1	Not: '1 kg and 1 m \underline{s}^{-1} ' Allow: (1 N =) $\underline{1 \text{ kg}} \times \underline{1 \text{ m s}}^{-2}$
	(b)		The <u>mass</u> of particles increases (at its speed gets closer to the speed of light)	B1	Not: 'weight of particle increases' Not: 'mass changes / different'
	(c)	(i)	net force = 120 (N) $a = \frac{120}{900}$ $a = 0.13 \text{ (m s}^2\text{)}$	C1	Note: Bald answer scores 2 marks; answer must be 2 sf or more
		(ii)	The drag force changes with speed / acceleration is not constant	B1	
	(d)		F = 72×1.4 (= 100.8 N) / weight = 72 × 9.81 (= 706.32 N)	C1	Note: Bald 101 (N) or 706 (N) scores 1 mark
			$T = (72 \times 9.81) + (72 \times 1.4)$	C1	
			T = 807 (N) or 810 (N)	A1	Note: Bald answer scores 3 marks Bald 605.52 to at least 2 sf scores 1 mark
			Total	8	

Question		ion	Expected Answers Marks		Additional Guidance	
4	(a)		The mass (of the electron) increases as its speed approaches <u>c</u> / <u>speed of light</u> / 3 × 10 ⁸ m s ⁻¹	M1 A1	Not: mass 'changes' / 'electron becomes heavier'	
	(b)	(i)	A line with correct arrow in the <i>y</i> direction has length of 14 to 16 'small squares' A line with correct arrow in the <i>x</i> direction has length of 24 to 26 'small squares'	B1 B1	Note: If correct arrows are not shown, then maximum mark is 1	
		(ii)	component = $(8.0 \cos 31 =)6.86 \text{ (m s}^{-1}) \text{ or } 6.9 \text{ (m s}^{-1})$	B1	Allow: 6.85 as BOD	
	(c)	(i)	Correct vector triangle drawn $2.14 \text{ (kN)} \qquad \qquad 1.50 \text{ (kN)}$ $90^{0} \qquad \qquad \qquad (\text{resultant force})^{2} = 2.14^{2} + 1.50^{2}$	B1	Note: Expect at least one 'label' on the sketch, eg: 2.14, 1.5, 90° The 'orientation' of the triangle is not important The directions of all three arrows are required	
			resultant force = 2.61 (kN)	A1	Allow: 2 sf answer of 2.6 (kN) Allow a scale drawing; 2 marks if answer is within ±0.1 kN and 1 mark if ± 0.2 kN Alternative for the C1 A1 marks: 1.50cos(55) or 2.14cos(35) resultant force = 1.50cos(55) + 2.14cos(35) resultant force = 2.61 (kN) A1	
		(ii)	2.6(1) (kN)	B1	Possible ecf	
			(Constant velocity implies) zero net force / zero acceleration	B1	Not : 'resultant force = drag' since the first B1 assumes this	
			Total	10		

4

G481 Mark Scheme June 2010

Q 1	Expected Answers	Marks	Additional Guidance
а	10^{6}	B1	Allow: 1000 000
	nano (n)	B1	Allow: nano / n / nano (N) as BOD
	10^{12}	B1	Allow: 1000 000 000 000
b	Circled quantities: density and volume	B1	
С	$1.5 \times 10^{11} = 3.0 \times 10^8 \times t$	C1	Allow: Any subject
	time = $\frac{1.5 \times 10^{11}}{3.0 \times 10^{8}}$ / 500 (s)		
	$time = 8.33 (min) \approx 8.3 (min)$	A1	Note: Bald 500 (s) scores 1 mark
		111	Allow: 2 marks for a bald answer of 8.3
			Allow: Answer as a fraction – 25/3 (min) / 8 min 20 s
			Allow : 1 mark for '(500/3600 =) 0.139'
d(i)	Mention of weight or drag	B1	Allow: (air) resistance / (air) friction for 'drag'
			Not: 'gravity' for 'weight' but 'force of gravity' is fine
	Net / total / resultant force (on drop) is zero 'upward force = downward force' / 'weight = drag' / 'weight balances drag'	В1	Not: 'acceleration = 0' since question requires answer in terms of forces Not: 'All forces are equal'
			Note : 'weight = drag' / 'weight balances drag' scores 2 marks
d(ii)1	A downward line / arrow (from the raindrop) leaning	B1	Note : Answer <u>must</u> be on Fig. 1.2
	to the right		Judge by eye – the angle is not important
d(ii)2	$v^2 = 1.5^2 + 4.0^2$	C1	
	velocity = $4.27 \text{ (m s}^{-1}) \approx 4.3 \text{ (m s}^{-1})$	A1	Allow: 2 marks for a scale drawing with value in the range 4.1
			to 4.5. If value in the range 4.0 to 4.1 or 4.5 to 4.6 then give 1
			mark
			Allow: 2 marks for a bald answer of 4.3 (m s ⁻¹)
	Total	11	

Q 3	Expected Answers	Marks	Additional Guidance
а	The (net) <u>force</u> (is a newton) when a 1 \underline{kg} mass has acceleration of 1 \underline{m} s ⁻²	B1	Not : $1 \text{ N} = 1 \text{ kg m s}^{-2}$ because this is too brief for a definition
b(i)	weight = $1.9 \times 10^6 \times 9.81$ weight = 1.86×10^7 (N)	B1	Allow: 9.8 (m s ⁻²) for g but not 10 (m s ⁻²) Allow: A bald answer of 1.9×10^7 N, but not if 10 (m s ⁻²) is seen
b(ii)	net force = 1.24×10^7 (N) or 1.2×10^7 (N) $a = \frac{F}{m} = \frac{1.24 \times 10^7}{1.9 \times 10^6}$ acceleration = 6.53 (m s ⁻²) or 6.5 (m s ⁻²)	C1	Allow : The C1 mark for "(net force) = $(3.1 - 1.86) \times 10^7$ (N)" Allow : 2 marks for a bald answer Allow : Answer of 6.3 (m s ⁻²) if 1.9×10^7 (N) is used for weight or net force of 1.2×10^7 (N) is used Allow : 1 mark for ' $3.1 \times 10^7/1.9 \times 10^6 = 16.3$ ' Not: ' $1.86 \times 10^7/1.9 \times 10^6 = 9.8$ '
b(iii)	The mass / weight (of spaceship) decreases (as it loses fuel)	B1	Allow: 'g' / acceleration of free fall / gravitational field strength decreases (but not gravity decreases) Not: 'less drag / air resistance'
	Total	5	

5

G481 Mark Scheme June 2011

Question		ion	Expected Answers		Additional Guidance	
4	a		Any two from: area speed / velocity viscosity (of air) / temperature / density (surface) texture / 'aerodynamic' (shape)	B1×2	Not: shape / size Allow: 'streamlining'	
	b	i	Correct directions of arrows W and D	B1	Award the mark for two arrows in opposite directions as long as <u>one</u> of them is labelled	
		ii	weight = 75×9.81		Reminder : weight can be quoted to more than 2 sf (e.g. 735.75)	
			weight = 736 (N) or 740 (N)	В1	Not : $^{\circ}75 \times 10 = 750 \text{ N}^{\circ}$	
		iii	$D = 0.30 \times 20^2 (= 120 \text{ N})$	C1		
			736 - 120 = 75a	C1		
			$a = 8.2 \text{ (m s}^{-2})$	A1	Allow : Answer to 2sf or more Bald answer of 8.2 or 8.21 scores 3 marks Note : Using 740 (N) gives an answer 8.3 (m s ⁻²)	
		iv	(D and W are) equal	B1	Not: D and W are 'balanced/equilibrium'	
		v	drag = weight			
			$736 = 0.30 \times v^2$	C1		
			$v = 49.5 \text{ (m s}^{-1}) \text{ or } 50 \text{ (m s}^{-1})$	A1	Bald answer of 49.5 (m s ⁻¹) or 50 (m s ⁻¹) scores 2 marks	
			Total	10		