Question 7				
(a) (i)		work (done)/energy (supplied) per unit charge (by battery) ✓		
		(or pd across terminals when no current passing through cell or open circuit)	1	
(a)	(ii)	when switch is closed a current flows (through the battery) ✓		
	hence a pd/lost volts develops across the internal resistance ✓		2	
(b)		(use of $\varepsilon = V + Ir$)		
		I = 5.8/10 = 0.58 (A) ✓	3	
		6.0 = 5.8 + 0.58 <i>r</i> ✓	3	
		$r = 0.2/0.58 = 0.34 (\Omega) \checkmark$		
(c)		need large current/power to start the car ✓ (or current too low)		
		internal resistance limits the current/wastes power(or energy)/reduces terminal pd/increases lost volts ✓	2	
		Total	8	

Question 7				
а	i	(use of $V = IR$)		
		R _{total} = 1 (ohm) ✓	2	
		V = 1 × 1 = 1.0 V ✓		
а	ii	(use of $V = IR$)		
		$R = 9.0/1.0 = 9.0 \Omega \checkmark$		
		$r = 9.0 - 1.0 - 6.0 = 2.0 \Omega$	2	
		or use of $(E = I(R + r))$	2	
		9.0 = 1(7 + r) ✓		
		$r = 9.0 - 7.0 = 2.0 \Omega \checkmark$		
а	iii	(use of $W = VIt$)		
		$W = 9.0 \times 1.0 \times 5 \times 60 \checkmark$	2	
		W = 2700 J ✓		
а	iv	energy dissipated in internal resistance = 1 ² × 2.0 × 5 × 60 = 600 (J) ✓	2	
		percentage = 100 × 600/2700 = 22% ✓ CE from part aii	2	
b		internal resistance limits current ✓		
		hence can provide higher current ✓		
		or energy wasted in internal resistance/battery ✓		
		less energy wasted (with lower internal resistance) ✓	max 2	
		or charges quicker ✓	max 2	
		as current higher or less energy wasted ✓		
		or (lower internal resistance) means higher terminal pd/voltage ✓		
		as less pd across internal resistance or mention of lost volts ✓		
		Total	10	

UMS conversion calculator www.aqa.org.uk/umsconversion	
--	--

6	а	i	(use of P=VI)		
			I = 36/12 + 6/12 ✓ = 3.5 (A) ✓	2	
6	а	ii	(use of V=IR)	1	
			R = 12/3 =4 (Ω) ✓	1	
6	а	iii	$R = 12/0.50 = 24 \checkmark (\Omega)$	1	
		d.		T:	
6	b		terminal pd/voltage across lamp is now less OR current is less ✓		
			due to lost volts across internal resistance OR due to higher resistance√	3	
	lamps less bright ✓				
6	С	i	current through lamps is reduced as resistance is increased or pd across lamps is reduced as voltage is shared ✓	2	
			hence power is less OR lamps dimmer ✓		
			-		
6	С	ii	lamp Q is brighter ✓		
			lamp Q has the <u>higher resistance</u> hence <u>pd</u> / <u>voltage</u> across is greater ✓	max 3	
			current is the same for both ✓	~ ~	
			hence power of Q greater ✓		

Mark schemes

1

power increases to a maximum / (up) to 3.0 (2.8 -3.4) Ω / / (up)to 3.0 W \checkmark then decreases √ 2 (b) (i) (use of $P = I^2R$) when R = 0.8 Ω power = 1.95 W \checkmark $1.9 = I^2 \times 0.8 \checkmark$ $I = \sqrt{2.375} = 1.5(4)$ (A) \checkmark Range 1.9 - 2.0 W for power (first mark) Current 1.5 - 1.6 A 3 (ii) (use of V = IR) $V = 1.54 \times 0.8 \checkmark$ $V = 1.2 \text{ V} \checkmark$ CE from part (i) 2 (iii) (use of $\varepsilon = V + Ir$) $6.0 = 1.2 + 1.54 \times r \checkmark$ $r = (6.0 - 1.2) / 1.54 = 3.1 (2.9 - 3.2)(\Omega) \checkmark$ use of maximum power theorem (quoted) as alternative method can get both marks i.e. read peak maximum from graph CE from part (ii) 2 power would decrease (as R increased) √ pd / voltage across R is now constant / equal to emf \checkmark

and so power proportional to 1 / R / inversely proportional to R OR
can quote P = V² / R but only if scored second mark √

3

[12]

Mark schemes

1

(a)	emf is the work done / energy transferred by a voltage source / battery / cell √per <u>unit</u> charge√ OR					
	electrical energy transferred / converted / delivered / produced / per unit charge / OR					
	pd a	cross terminals when no current flowing / open circuit√√ not <u>in</u> battery accept word equation OR symbol equation with symbols defined if				
		done then must explain energy / work in equation for first mark	2			
(b)	(i)	by altering the (variable) <u>resistor</u> √	1			
	(ii)	reference to correct internal resistance√ e.g. resistance of potato (cell) terminal pd = emf – pd across internal resistance / lost volts√ pd / lost volts increases as current increases OR as (variable) resistance decreases greater proportion / share of emf across internal resistance√ accept voltage for pd				
	(iii)	draws best fit straight line and attempts to use gradient \checkmark uses triangle with base at least 6 cm \checkmark value in range 2600 – 2800 (Ω) \checkmark	3			
		stand-alone last mark	3			
(c)		emf is above 1.6 V√ will not work as current not high enough / less than 20 mA√	2	[11]		

Question		ion	Answer	Marks	Guidance		
3	(a)	(i)	energy transferred from source/changed from some form to electrical energy;				
			per unit charge (to drive charge round a complete circuit)	A1	allow energy <u>divided by</u> charge		
		(ii)	any source has an internal resistance	B1			
			where energy is transferred into thermal energy /lost as		there will be 'lost' volts (across the cell when a current is		
			heat	B1	drawn) or V = E – Ir explained		
	(b)	(i)	V = IR 1.2 = 0.2 R	C1	substitution needed to score mark		
	` ′	`	R = 6.0 Ω	A1	allow 6 Ω		
		(ii)	1.6 – 1.2 = 0.4 = 0.2 r	C1			
			r = 2.0 Ω	A1	allow 2 Ω		
	(c)	(i)1	Q = It = 0.20 x 3600 x 1.5	C1	substitution needed to score mark		
	` '	'	=1100	A1	1080 allow 1 mark max for 0.3 or 18		
			correct unit,	B1	allow C, kC, A s		
					exception 0.3 A h or 18 A min scores 3 marks		
		(i)2	energy = QV = 1100 x 1.2 or I ² Rt = 0.2 ² x 6 x5400	C1	ecf (c)(i)1 substitution needed to score mark		
			= 1320 (J)	A1	1296(1080) allow 1 mark for 1728 (using 1.6)		
		(ii)	I is constant for about 9 to 10 hours	B1	QWC must have link between observation and reason to		
			because internal resistance remains constant/cell operates		score full marks		
			at constant emf	B1			
			I falls rapidly/towards zero over last hour or so	B1			
			because <u>cell</u> 's/ <u>chemical</u> <u>energy</u> is used up (so E falls)	B1	accept r of cell increases causing fall in V or I		
				47			
			Total	17			

5

G482 Mark Scheme June 2012

Question		ion	Answer	Marks	Guidance
4 (a)			R's in parallel have same V/AW	M1	allow I splits in inverse ratio to R or AW;
			so $4.0 \times 0.30 = 6.0 \times 0.20$	A1	hence I in 6 ohm = 4 / 6 x 0.3 = 0.2 A
	(b)	(i)	sum of/total current into a junction equals the sum of/total current out or total algebraic sum of currents is zero	B1	allow Kirchhoff's first law
		(ii)	0.50 (A)	A1	accept 0.5 (A) (no SF error)
	(c)		correct formula for R _p and substitution	C1	
			$R_p = 2.4 \Omega$	C1	apply ecf to R _p for second mark
			$R_{s} = 8.0 (\Omega)$	A1	accept 8 (Ω) (no SF error)
	(d)	(i)	energy transferred from source/changed from some form to electrical energy;	M1	allow form as e.g. light/chemical/heat
			per unit charge (to drive charge round a complete circuit)	A1	allow energy <u>divided by</u> charge
		(ii)	V = IR = 0.50 x 8.0 =4.0 (V)	A1	ecf b(ii),c i.e. answer = b(ii) x c accept 4 (V) (no SF error)
		(iii)	E – V = Ir giving 5.0 – 4.0 = 0.50 r	C1	ecf b(ii)
		()	$r = 2.0 (\Omega)$	A1	accept 2 (Ω) (no SF error); give max of 1 mark for r = 3.3 Ω ,
					i.e. using I = 0.3 A
			Total	12	