

Percentage	
Grade	

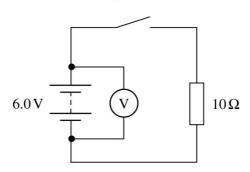
A Level Physics

Internal Resistance

Duration: 1 hour 30 min

Total Marks: 87

Information for Candidates:


- •Use black or blue ink. HB pencil may be used for graphs and diagrams only.
- Answer all the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Write your answer to each question in the space provided. If additional paper is used, the question number(s) must be clearly shown
- The number of marks is given in brackets [] at the end of each question or part question.
- You may use an electronic calculator.
- You are advised to show all the steps in any calculations.

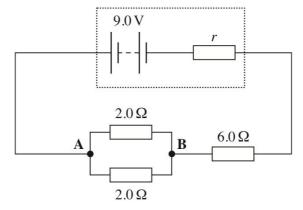
Do not write in this table		
Question	Mark	
TOTAL		

box

A battery is connected to a $10\,\Omega$ resistor as shown in **Figure 2**. The emf (electromotive force) of the battery is 6.0 V.

Figure 2

7	(a) (i)	Define the emf of a battery.
		(1 mark)
7	(a) (ii)	When the switch is open the voltmeter reads 6.0 V and when it is closed it reads 5.8 V. Explain why the readings are different.
		(2 marks)



7 (b)	Calculate the internal resistance of the battery.	
	answer = Ω (3 marks)	
7 (c)	State and explain why it is important for car batteries to have a very low internal resistance.	
	(2 marks)	
		8
	END OF QUESTIONS	

A battery of emf $9.0 \,\mathrm{V}$ and internal resistance, r, is connected in the circuit shown in **Figure 2**.

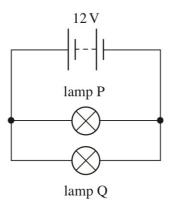
Figure 2

7 (a)	The current in the battery is 1.0 A.
7 (a) (i)	Calculate the pd between points A and B in the circuit.
7 (a) (ii)	answer =
	answer = Ω
	(2 marks)
7 (a) (iii)	Calculate the total energy transformed by the battery in 5.0 minutes.
7 (a) (iv)	answer =
	answer

Turn over ▶

7 (b)	State and explain one reason why it is an advantage for a rechargeable battery to have a low internal resistance.
	(2 marks)

10


END OF QUESTIONS

Copyright © 2012 AQA and its licensors. All rights reserved.

A battery of negligible internal resistance is connected to lamp P in parallel with lamp Q as shown in **Figure 2**. The emf of the battery is 12 V.

Figure 2

- 6 (a) Lamp P is rated at 12 V 36 W and lamp Q is rated at 12 V 6 W.
- 6 (a) (i) Calculate the current in the battery.

6 (a) (ii) Calculate the resistance of P.

answer =
$$\Omega$$
 (1 mark)

6 (a) (iii) Calculate the resistance of Q.			
	answer = Ω (1 mark)		
6 (b)	State and explain the effect on the brightness of the lamps in the circuit shown in Figure 2 if the battery has a significant internal resistance.		
	(3 marks)		
	Question 6 continues on the next page		

Turn over ▶

The lamps are now reconnected to the 12 V battery in series as shown in **Figure 3**. 6 (c) Figure 3 12 V lamp Q lamp P 6 (c) (i) Explain why the lamps will not be at their normal brightness in this circuit. (2 marks) 6 (c) (ii) State and explain which of the lamps will be brighter assuming that the resistance of the lamps does not change significantly with temperature. (3 marks) 12 Turn to page 14 for the next question

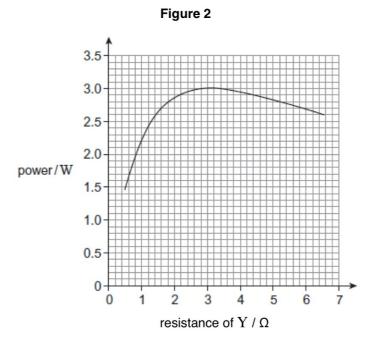

A student investigates how the power dissipated in a variable resistor, Y, varies as the resistance 1 is altered.

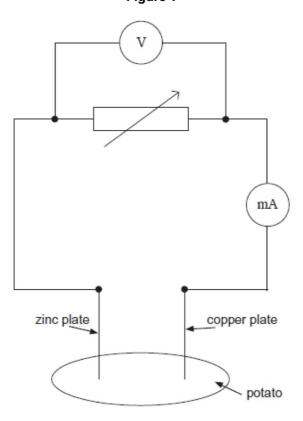
Figure 1 shows the circuit the student uses. Y is connected to a battery of emf ε and internal

resistance r.

Figure 1

Figure 2 shows the results obtained by the student as the resistance of Y is varied from 0.5 Ω to 6.5 Ω.

(a)	Des 6.5 9	cribe how the power dissipated in Y varies as its resistance is increased from 0.5 Ω to $\Omega.$	
			(2)
(b)	The	emf of the battery is 6.0 V and the resistance of Y is set at 0.80 $\Omega.$	
	(i)	Use data from Figure 2 to calculate the current through the battery.	
		current A	
	(ii)	Calculate the voltage across Y.	(3)
	(11)	Calculate the voltage across 1.	
		voltageV	(0)
	(iii)	Calculate the internal resistance of the battery.	(2)
		internal resistanceΩ	(2)

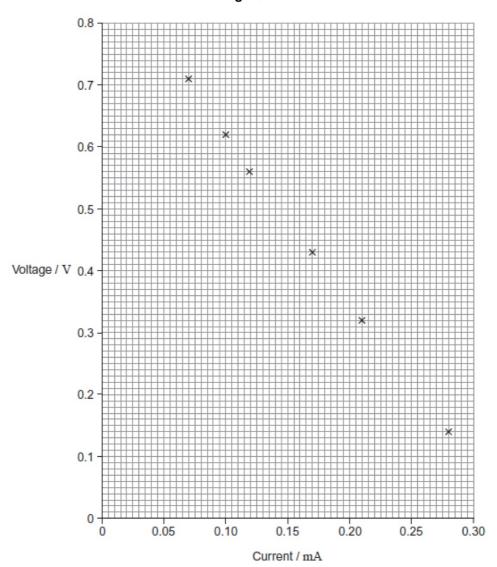

re	sistance. State and explain how you would now expect the power dissipated in Y to vary the resistance of Y is increased from 0.5 Ω to 6.5 Ω .
	(3)

1

(a)

A 'potato cell' is formed by inserting a copper plate and a zinc plate into a potato. The circuit shown in **Figure 1** is used in an investigation to determine the electromotive force and internal resistance of the potato cell.

Figure 1



State what is meant by electromotive force.	

(2)

(b) The plotted points on **Figure 2** show the data for current and voltage that were obtained in the investigation.

Figure 2

(1)	Suggest what was done to obtain the data for the plotted points.

.....

	(ii)	The electromotive force (emf) of the potato cell is 0.89 V. Explain why the voltages plotted on Figure 2 are always less than this and why the difference between the emf and the plotted voltage becomes larger with increasing current.	
			(3)
	(iii)	Use Figure 2 to determine the internal resistance of the potato cell.	
		internal resistance =Ω	(3)
(c)	diod	udent decides to use two potato cells in series as a power supply for a light emitting e (LED). In order for the LED to work as required, it needs a voltage of at least 1.6 V a current of 20 mA.	
	Expl	ain whether the LED will work as required.	
			(2)
		(Total 11 ma	

		a source of e.m.f. When the cell is connected into a circuit the potential difference measured its terminals, called the <i>terminal p.d.</i> , is less than its e.m.f.
(a)	(i)	Define the term <i>e.m.f.</i>
		[2]
	(ii)	Explain why the terminal p.d. is less than the e.m.f.
		[2]
(b)		the circuit of Fig. 3.1 the cell of e.m.f. 1.6V and internal resistance r is delivering a current 20A to a resistor of resistance R . The voltmeter reads the terminal p.d. It is 1.2V.
		0.20 A 1.6 V R V
		Fig. 3.1
	Cal	culate the values of
	(i)	the resistance R
		R = Ω [2]
	(ii)	the internal resistance <i>r</i> .
		$r = \dots \Omega$ [2]

3

	Created Using StudySpace: www.tutorzo
(c) (i)	The current in the resistor of Fig. 3.1 remains constant at 0.20 A for several hours Calculate
	1 the charge which passes through the resistor in 1.5 hours
	charge = unit
	2 the energy dissipated by the resistor in 1.5 hours.
	energy = J [2]
(ii)	The cell is left connected to the resistor for 12 hours. The graph of Fig. 3.2 shows the variation of current I with time t .
	0.25 0.20 0.15 0.10 0.05 0.05 0.05 0.05 0.05 0.10
	time/nours

Fig. 3.2

Describe how the current varies with time. Suggest reasons why it varies in this way.

In your answer you should link each feature of the graph to the reason for it.
[4]
[Total: 17]

Turn over © OCR 2012

4 Fig. 4.1 shows part of a circuit where three resistors are connected together.

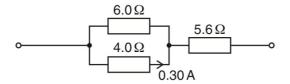


Fig. 4.1

The current in the $4.0\,\Omega$ resistor is $0.30\,A$.

(a)	Ехр	plain why the current in the 6.0 Ω resistor is 0.20 A.	
(b)	(i)	State the law which enables you to calculate the current in the 5.6Ω resistor.	
	(ii)	Calculate the current in the 5.6 Ω resistor.	
		current =	A [1]
(c)	Cal	culate the total resistance R of the combination of resistors.	

 $R = \dots \Omega$ [3]

(d)		cause the current of $0.30\mathrm{A}$ in the 4.0Ω resistor, the resistor combination is connected to a supply of electromotive force (e.m.f.) 5.0V.
	(i)	Explain the term <i>e.m.f.</i>
		[2]
	(ii)	Show that the terminal potential difference across the supply is 4.0V.
		[1]
,	(iii)	Calculate the internal resistance of the supply.
		internal resistance = Ω [2]
		[Total: 12]

© OCR 2012 Turn over