Question 5

Question	Answers	Extra information	Mark	AO / Spec. Ref.
	add excess copper carbonate (to dilute hydrochloric acid) filter (to remove excess copper carbonate) heat filtrate to evaporate some	accept alternatives to excess, such as 'until no more reacts' reject heat until dry	1 1 1	AO1/2
05.1	water or heat to point of crystallisation leave to cool (so crystals form)	accept leave to evaporate or leave in evaporating basin until crystals form must be in correct order to gain 4 marks	1	4.4.2.3
05.2	$M_{\rm r}$ CuCl ₂ = 134.5 moles copper chloride = (mass/ $M_{\rm r}$ = 11/134.5) = 0.0817843866 $M_{\rm r}$ CuCO ₃ = 123.5 Mass CuCO ₃ (=moles × M ₂ = 0.08178 × 123.5) = 10.1(00)	correct answer scores 4 marks accept 10.1 with no working shown for 4 marks	1 1 1 1	AO2/1 AO2/1 AO2/1 AO2/1 4.3.2.2
05.3	$\frac{79.1}{100} \times 11.0$ or 11.0×0.791 8.70 (g)	accept 8.70(g) with no working shown for 2 marks	1	AO2/1 4.3.3.1

Question 5 continues on the next page

Question 5 continued

Question	Answers	Extra information	Mark	AO / Spec. Ref.
	Total mass of reactants = 152.5		1	
	<u>134.5</u> 152.5	allow ecf from step 1	1	
05.4	88.20 (%)	allow 88.20 with no working shown for 3 marks	1	AO2/2 4.3.3.2
05.5	atom economy using carbonate lower because an additional product is made or carbon dioxide is made as well	allow ecf	1	AO3/2b 4.3.3.2
Total			14	

Question 8

Question	Answers	Extra information	Mark	AO / Spec. Ref.
08.1	(sulfuric acid is) completely/fully ionised		1	AO1/1 4.4.2.6
	In aqueous solution or when dissolved in water		1	
08.2	$H^{+}(aq) + OH^{-}(aq) \rightarrow H_2O(I)$	allow multiples 1 mark for equation 1 mark for state symbols	2	AO1/1 4.4.2.4
08.3	adds indicator, eg phenolpthalein/methyl orange/ litmus added to the sodium hydroxide (in the conical flask)	do not accept universal indicator	1	AO1/2 4.3.4 4.4.2.5
	(adds the acid from a) burette		1	
	with swirling or dropwise towards the end point or until the indicator just changes colour		1	
	until the indicator changes from pink to colourless (for phenolphthalein) or yellow to red (for methyl orange) or blue to red (for litmus)		1	
08.4	titrations 3, 4 and 5 or 27.05 + 27.15 + 27.15		1	AO2/2 4.3.4 4.4.2.5
	27.12 cm ³	accept 27.12 with no working shown for 2 marks	1	
		allow 27.1166 with no working shown for 2 marks		

Question 8 continues on the next page

Question 8 continued

Question	Answers	Extra information	Mark	AO / Spec. Ref.
08.5	Moles $H_2SO_4 = conc \times vol = 0.00271$	allow ecf from 8.4	1	AO2/2
	Ratio H_2SO_4 :NaOH is 1:2 or Moles NaOH = Moles $H_2SO_4 \times 2$ = 0.00542		1	AO2/2
	Concentration NaOH = mol/vol = 0.00542/0.025 = 0.2168		1	AO2/2
	0.217 (mol/dm³)		1	AO2/2
		accept 0.217 with no working for 4 marks		4.3.4 4.4.2.5
		accept 0.2168 with no working for 3 marks		
08.6	$\frac{20}{1000}$ × 0.18 = no of moles		1	AO2/2 4.3.4 4.4.2.5
	or			
	0.15 × 40 g			
	0.144 (g)	accept 0.144g with no working for 2 marks	1	
Total			16	

Question number	Answer	Additional guidance	Mark
10(a)	Formula mass ammonium chloride = $14.0 + 4.00 + 35.5 = 53.5$ moles of ammonium chloride = $\frac{10.0}{53.5} = 0.187$ (1) volume ammonia = 0.187×24 = $4.49 \mathrm{dm}^3$ (1) or • $2 \times 53.5 = 107 \mathrm{g}$ ammonium chloride produces $2 \times 24 = 48 \mathrm{dm}^3$ ammonia (1) • $10.0 \mathrm{g}$ ammonium chloride produces $\frac{10.0}{2 \times 53.5} \times 2 \times 24 = 4.49 \mathrm{dm}^3$	Award full marks for correct numerical answer without working.	
	ammonia (1)		(2)

Question number	Answer	Additional guidance	Mark
10(b)(i)	$25 \div 1000 \times 0.1 = 0.0025$ (1)		
	$35 \div 1000 \times 0.075 = 0.002625$ (1)		
	The acid is in excess (1)	Third mark only awarded as conclusion from calculated data.	(3)

Question number	Answer	Mark
10(b)(ii)	$\frac{36.20 + 36.30}{2} = 36.25 (1)$	(1)

Question number	Answer	Mark
10(b)(iii)	D	(1)

128

Question number	Answer	Additional guidance	Mark
number 10(c)	mol of acid = $24.80 \div 1000 \times 0.200$ (= 0.00496 mol) (1) mol NaOH = 2×0.00496 (= 0.00992) (1) conc. of NaOH = $0.00992 \div 25.0 \times 1000$ (1) = $0.3968/0.397$ (mol dm ⁻³) (1) or (25.00 × conc NaOH) \div 2 = 24.80 × 0.200 (2)	Award full marks for correct numerical answer without working. Allow max 3 marks if missing '2 ×' in step 2.	
	conc NaOH = 2 × 24.80 × 0.200 ÷ 25.00 (1)		
	= 0.3968/0.397 (mol dm ⁻³) (1)		(4)

10	(2)	Moon titro = 17.1 (1)	2	2 1h	ICNORE anything in the titration table
19	(a)	Mean titre = 17.1 (1) Because titration 1 is a rough estimate / titration 1 is an outlier / titrations 2 and 3 are identical (1)	2	3.1b 3.2b	IGNORE anything in the titration table
	(b)	Moles of acid = 0.00171 (1) Concentration of KOH = 0.0684 (1)	2	2.1	ALLOW ECF from incorrect titre / 0.100 × titre × 10 ⁻³ ALLOW ECF from incorrect moles providing answer is to 3 sig figs / moles+volume
	(c)	M _r of KOH = 56.1 (1) Concentration of KOH = 3.84 (1)	2	2.1	ALLOW correct answer without working ALLOW 3.837