Question	Part	Sub Part	Marking Guidance	Mark	Comments
2	(a)	(i)	M _r = 132.1	1	132
			0.0238	1	Allow 0.024 Allow 0.0237 Penalise less than 2 sig fig once in (a)
2	(a)	(ii)	0.0476	1	0.0474-0.0476 Allow (a) (i) x 2
2	(a)	(iii)	1.21	1	Allow consequential from (a) (ii) ie allow (a) (ii) x 1000 / 39.30 Ignore units even if wrong
2	(b)		34 x 100 212.1 = 16.0(3)%	1	Allow mass or Mr of desired product times one hundred divided by total mass or Mr of reactants/products [1 34/212.1 seen correctly award M1 Allow 16% 16 scores 2 marks
2	(c)		100(%)	1	Ignore all working
2	(d)		PV = nRT or n = <u>PV</u> RT	1	If rearranged incorrectly lose M1 and M3
			n = $\frac{100000 \times 1.53 \times 10^{-2}}{8.31 \times 310}$	1	M2 for mark for converting P and T into correct units in any expression
			= 0.59(4)	1	Allow 0.593 M3 consequential on transcription error only not on incorrect P and T

2	(e)	(Na ₂ SO ₄) (44.1%)	H₂O 55.9%	1	M1 is for 55.9
		44.1/142.1 0.310 =1	55.9/18 3.11 =10	1	Alternative method gives180 for water part =2 marks
		x = 10		1	X = 10 = 3 marks 10.02 = 2 marks

 $Mark\ Scheme-General\ Certificate\ of\ Education\ (A-level)\ Chemistry-Unit\ 1:\ Foundation\ Chemistry-June\ 2011$

Question	Marking Guidance	Mark	Comments
2(a)(i)	0.0212	1	Need 3 sig figs Allow correct answer to 3 sig figs eg 2.12 x 10 ⁻²
2(a)(ii)	0.0106	1	Mark is for 2(a)(i) divided by 2 leading to correct answer ≥ 2 sig figs
2(a)(iii)	$M_r = \frac{100.1}{1.06 \text{ g}}$	1	Allow 100.1 as 'string' Need 3 sig figs or more Consequential on 2(a)(ii) x 100(.1)
2(a)(iv)	Neutralisation or acid / base reaction	1	Allow acid / alkali reaction Apply list principle
2(b)(i)	T = 304(K) and P = 100 000 (Pa) $\frac{100\ 000\ x\ 3.50\ x\ 10^{-3}}{8.31\ x\ 304} \text{ OR n} = \frac{PV}{RT}$	1	Only T and P correctly converted
	0.139 (mol)	1	Allow <u>0.138 – 0.139</u>
2(b)(ii)	0.0276 – 0.0278(mol)	1	Allow answer to 2(b)(i) divided by 5 leading to a correct answer Allow 0.028

2(c)	4.20 g Ca(NO ₃) ₂	1	
	Ca(NO ₃) ₂ H ₂ O <u>4.20</u> <u>1.84</u> 164(.1) 18	1	Mark is for dividing by the correct <i>M</i> _r values M2 and M3 dependent on correct M1
	0.0256 0.102		M2 can be awarded here instead
	1 : 3.98		
	x = 4	1	If $Ca(NO_3)_2.4H_2O$ seen with working then award 3 marks Credit alternative method which gives $x = 4$

Mark Scheme – General Certificate of Education (A-level) Chemistry – Unit 1: Foundation Chemistry – January 2012

Question	Marking Guidance	Mark	Comments
6(a)	Mol Pb = 8.14 / 207(.2) (= 0.0393 mol)	1	M1 and M2 are process marks
	Mol HNO ₃ = 0.0393 x 8 / 3 =0.105 mol	1	Allow mark for M1 x 8/3 or M1 x 2.67
	Vol HNO ₃ = $0.105 / 2 = 0.0524 \text{ (dm}^3\text{)}$	1	Accept range 0.0520 to 0.0530
			No consequential marking for M3
			Answer to 3 sig figs required
6(b)	101000 (Pa) and 638 x 10 ⁻⁶ (m ³)	1	
	n = pV/RT $\left(= \frac{101000 \times 638 \times 10^{-6}}{8.31 \times 298} \right)$	1	Can score M2 with incorrect conversion of p and V
			If T incorrect lose M1 and M3
	<u>0.026(</u> 0) (mol)	1	If answer correct then award 3 marks
			Allow answers to 2 sig figs or more
			26.02 = 1
			If transcription error lose M3 only
6(c)(i)	$2Pb(NO_3)_2(s) \rightarrow 2 PbO(s) + 4NO_2(g) + (1)O_2(g)$	1	Allow multiples
			Allow fractions
6(c)(ii)	Decomposition not complete / side reactions / by-products / some (NO ₂) escapes / not all reacts / impure Pb(NO ₃) ₂	1	Ignore reversible / not heated enough / slow
6(c)(iii)	Hard to separate O ₂ from NO ₂ / hard to separate the 2	1	Allow mixture of gases
	gases		Not 'all products are gases'

Question	Marking Guidance	Mark	Comments
5(a)	P = 100 000 Pa and T = 298 K	1	Wrong conversion of V or incorrect conversion of P/T lose M1 + M3
	n = <u>PV</u> or <u>100 000 x 4.31</u> RT <u>8.31 x 298</u>	1	If not rearranged correctly then cannot score M2 and M3
	n(total) = 174(.044)	1	
	n (NO) = <u>69.6</u>	1	Allow student's M3 x 4/10 but must be to 3 significant figures
5(b)(i)	3000 17	1	Allow answer to 2 significant figures or more
	176.5	1	Allow 176–177 But if answer = 0.176 – 0.18 (from 3/17) then allow 1 mark

Mark Scheme – General Certificate of Education (A-level) Chemistry – Unit 1: Foundation Chemistry – January 2013

5(b)(ii)	176.47 x 46 = 8117.62	1	M1 is for the answer to (b)(i) x 46. But lose this mark if $46 \div 2$ at any stage However if $92 \div 2$ allow M1
	8117.62 x <u>80</u> (= 6494 g)	1	M2 is for M1 x 80/100
	6494 = 6.5 1000	1	M3 is for the answer to M2 ÷ 1000 to min 2 significant figures (kg)
	OR		
	If 163 mol used: 163 x 46 = 7498 (1)		
	7498 x <u>80</u> = 5998.4 g (1)		
	6.00 kg (1)		

5(c)	0.543 x <u>2</u> (= 0.362)	1	If not $\times \frac{2}{3}$ CE = 0/2
	$0.362 \times \frac{1000}{250} = 1.45 \text{ (mol dm}^{-3}\text{)}$	1	Allow 1.447-1.5 (mol dm ⁻³) for 2 marks
5(d)	${ m NO_2}$ contributes to acid rain / is an acid gas / forms ${ m HNO_3}$ / ${ m NO_2}$ is toxic / photochemical smog	1	Ignore references to water, breathing problems and ozone layer. Not greenhouse gas
5(e)	Ensure the ammonia is used up / ensure complete reaction or combustion OR	1	
	Maximise the yield of nitric acid or products		
5(f)	Neutralisation	1	Allow acid vs alkali or acid base reaction

MARK SCHEME – A-LEVEL CHEMISTRY – CHEM1 – JUNE 2016

Question	Marking Guidance	Mark	Comments
	Correct conversion of temperature and pressure (773 and 101 x 10^3)	1	correct answer with or without working scores 4 marks
6(a)	No moles P = (220 / 4 x 31.0) = 1.77	1	Max 2 (M1 and M3) if 31.0 used (=0.451 m ³ or if 220/31 rounded to 2 sf ie
	V = nRT/P (correct rearrangement or insert of values V = 1.77 x $8.31 \times 773 / 101 \times 10^3 = 0.1128 \text{ m}^3$)	1	7.1 then 0.452) Max 2 (M1 and M3) if 284 (P ₄ O ₁₀) used then 0.0493
	$V = 0.113 \text{ (m}^3)$	1	Must be 3 sig figs
			correct answer with or without working scores 3 marks
	No moles $H_3PO_4 = 3 \times 10^3 \text{ (dm}^3) \times 5 = 15,000 \text{ (mols)}$	1	If M1 incorrect then can only score M2
6(b)	No moles phosphorus(V) oxide = $\frac{15000}{4}$ (= 3,750 mols)	1	$M2 = \frac{M1}{4} \text{ (process)}$
			If M2 incorrect can only score M1
	1.1 x 10 ⁶ or 1.07 x 10 ⁶ or 1.065 x 10 ⁶ (g) or 1,100 or 1,070 or 1065 kg or 1.1 or 1.07 or 1.065 tonne	1	= (3.75 x 10 ³ x 284.0) Min 2 sig fig

2

			correct answer with or without working scores 4 marks
	No moles $Ca_3(PO_4)_2$ (= 3.50kg =) $\frac{3.500 \text{ g}}{310(.3)}$ = 11.28	1	If M1 incorrect can only score M2 and M3
0(0)	Theoretical No. moles $H_3PO_4 = 11.28 \times 2 = 22.56$	1	If M2 incorrect can only score M1 and M3
6(c)	Theoretical mass H ₃ PO ₄ = 22.56 x 98(.0) = 2211 or Actual No. moles H ₃ PO ₄ produced = $\frac{1090}{98}$ = 11.12	1	If M3 incorrect can only score M1and M2
	49 – 49(.312) (%)	1	(% yield (moles) = $(\frac{11/.12}{22.56} \times 100)$ or (% yield (mass) = $(\frac{1090}{2211} \times 100)$
6(d)	Method 1 / (a) & (b) because only one product / no other products formed / atom economy = 100% (even though two steps)	1	Allow calculations Do not allow if P_2O_5 is formed Allow converse explanation

F321 Mark Scheme June 2010

Qu	esti	on	Expected Answers	Marks	Additional Guidance
1	а	i	¹¹⁸ Sn 50p 68n 50e Complete row ✓	1	
		ii	¹²⁰ ₅₀ Sn has (two) more neutrons / 70 neutrons ✓ ora	1	ALLOW There is a different number of neutrons IGNORE correct reference to protons / electrons DO NOT ALLOW incorrect references to protons / electrons ALLOW ECF for stated number of neutrons from 1a(i)
	b	i	The (weighted) mean mass of an atom (of an element) OR The (weighted) average mass of an atom (of an element) ✓	3	ALLOW average atomic mass DO NOT ALLOW mean mass of an element ALLOW mean mass of isotopes OR average mass of isotopes DO NOT ALLOW the singular; 'isotope' For second and third marking points
			compared with 1/12th (the mass) ✓ of (one atom of) carbon-12 ✓		ALLOW compared with (the mass of) carbon-12 which is 12
			or (one aroun or) carbon-12 v		ALLOW mass of one mole of atoms ✓ compared to 1/12th ✓ (mass of) one mole OR 12g of carbon-12 ✓ ALLOW
					mass of one mole of atoms 1/12th mass of one mole OR 12g of carbon-12
	C		moles of Sn = $\frac{2080}{118.7}$ = 17.52 \checkmark 17.52 × 6.02 × 10 ²³ = 1.05 × 10 ²⁵ atoms \checkmark	2	ALLOW 17.5 up to (correctly rounded) calculator value of 17.52316765 DO NOT ALLOW use of 118, which makes moles of Sn = 17.63 ALLOW 105 × 10^{23} atoms DO NOT ALLOW answers which are not to three sig figs for second marking point ALLOW two marks for answer only of 1.05×10^{25} ALLOW one mark for answer only if not 3 sig figs up to calculator value of $1.054894693 \times 10^{25}$ Eg 100×1 ALLOW ECF for any calculated moles of Sn (based on use of any A_r value) × 6.02×10^{23} if shown to 3 sig figs DO NOT ALLOW mass of Sn × 6.02×10^{23}

F321 Mark Scheme June 2010

Qu	esti	on	Exp	ected Answe	rs	Marks	Additional Guidance
1	d		<u>78.8</u> and	21.2		2	ALLOW SnO ₂ for one mark if no working shown
			118.7	16.0			ALLOW use of 118 for this part
			OR = 0.66(4) and $\frac{0.66(4)}{0.66(4)} = 1$	$= 1.3(25)$ $\frac{1.325}{0.66(4)} = 2$	✓		IGNORE incorrect rounding provided given to two sig figs IGNORE incorrect symbols e.g. T or Ti for Tin, as long as correct A_r of tin (118.7 or 118) used
			ans = SnO₂ ✓	,			ALLOW Sn ₂ O for 1 mark ECF if both inverted mole calculations are shown
							ALLOW Sn ₃ O ₅ with evidence of use of both atomic numbers for one mark
							ALLOW 2 marks if candidate has adopted the following approach 78.8% of mass = 118.7 100% of mass = 118.7/0.788 = 150.6 (151) 150.6 - 118.7 = 31.9 (32) Both masses would get one mark 31.9/16 = 2
					Total	9	