

Percentage	
Grade	

A Level Chemistry

Mole Calculations

Duration: 1 hour 15 min

Total Marks: 69

Information for Candidates:

- •Use black or blue ink. HB pencil may be used for graphs and diagrams only.
- Answer all the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Write your answer to each question in the space provided. If additional paper is used, the question number(s) must be clearly shown
- The number of marks is given in brackets [] at the end of each question or part question.
- You may use an electronic calculator.
- You are advised to show all the steps in any calculations.

Do not write in	this table
Question	Mark
TOTAL	

not be scanned for marking

2			sulfate reacts with sodium hydroxide to form ammonia, sodium sulfate and wn in the equation below.	
		(NH ₄)	$_{2}SO_{4}(s) + 2NaOH(aq) \longrightarrow 2NH_{3}(g) + Na_{2}SO_{4}(aq) + 2H_{2}O(l)$	
2	(a)		g sample of ammonium sulfate reacted completely with 39.30 cm ³ of a sodium ide solution.	ĺ
2	(a)	(i) C	Calculate the amount, in moles, of $(NH_4)_2SO_4$ in 3.14 g of ammonium sulfate.	
		•		
			(2 mark	
2	(a)	(ii) H	Hence calculate the amount, in moles, of sodium hydroxide which reacted.	
			(1 mar.	 k)
2	(a)	(iii) C	Calculate the concentration, in mol dm ⁻³ , of the sodium hydroxide solution used	l.
		•	(1 mar.	 k)
2	(b)		ate the percentage atom economy for the production of ammonia in the reaction ammonium sulfate and sodium hydroxide.	1
			/2 1	
			(2 mark	s)

for marking

2	(c)	Ammonia is manufactured by the Haber Process.
		$N_2 + 3H_2 \Longrightarrow 2NH_3$
		Calculate the percentage atom economy for the production of ammonia in this process.
		(1 m out)
		(1 mark)
2	(d)	A sample of ammonia gas occupied a volume of 1.53×10^{-2} m ³ at 37 °C and a pressure of 100 kPa. (The gas constant $R = 8.31 \mathrm{J K^{-1} mol^{-1}}$)
		Calculate the amount, in moles, of ammonia in this sample.
		(3 marks)
		(Extra space)
2	(e)	Glauber's salt is a form of hydrated sodium sulfate that contains 44.1% by mass of sodium sulfate. Hydrated sodium sulfate can be represented by the formula Na_2SO_4 . xH_2O where x is an integer. Calculate the value of x .
		(Extra space)(3 marks)

Turn over ▶

2	Norgessaltpeter was the first nitrogen fertiliser to be manufactured in Norway. It has the formula $\text{Ca}(\text{NO}_3)_2$
2 (a)	Norgessaltpeter can be made by the reaction of calcium carbonate with dilute nitric acid as shown by the following equation.
	$CaCO_3(s) + 2HNO_3(aq) \longrightarrow Ca(NO_3)_2(aq) + CO_2(g) + H_2O(I)$
	In an experiment, an excess of powdered calcium carbonate was added to $36.2\mathrm{cm^3}$ of $0.586\mathrm{moldm^{-3}}$ nitric acid.
2 (a) (i)	Calculate the amount, in moles, of $\rm HNO_3$ in $36.2\rm cm^3$ of $0.586\rm moldm^{-3}$ nitric acid. Give your answer to 3 significant figures.
	(1 mark)
2 (a) (ii)	Calculate the amount, in moles, of $CaCO_3$ that reacted with the nitric acid. Give your answer to 3 significant figures.
	(1 mark)
2 (a) (iii)	Calculate the minimum mass of powdered CaCO ₃ that should be added to react with all of the nitric acid. Give your answer to 3 significant figures.
	(2 marks)
2 (a) (iv)	State the type of reaction that occurs when calcium carbonate reacts with nitric acid.
	(1 mark)

2 (b)	Norgessaltpeter decomposes on heating as shown by the following equation.			
	$2Ca(NO_3)_2(s) \longrightarrow 2CaO(s) + 4NO_2(g) + O_2(g)$			
	A sample of Norgessaltpeter was decomposed completely.			
	The gases produced occupied a volume of $3.50 \times 10^{-3} \mathrm{m}^3$ at a pressure of $100 \mathrm{kPa}$ and a temperature of $31 ^{\circ}\mathrm{C}$. (The gas constant $R = 8.31 \mathrm{J \ K^{-1} \ mol^{-1}}$)			
2 (b) (i)	Calculate the total amount, in moles, of gases produced.			
	(3 marks)			
2 (b) (ii)	Hence calculate the amount, in moles, of oxygen produced.			
	(1 mark)			
2 (c)	Hydrated calcium nitrate can be represented by the formula $Ca(NO_3)_2.xH_2O$ where x is an integer.			
	A 6.04 g sample of Ca(NO ₃) ₂ .xH ₂ O contains 1.84 g of water of crystallisation.			
	Use this information to calculate a value for <i>x</i> . Show your working.			
	(3 marks)			

Turn over ▶

12

Section B

Answer all questions in the spaces provided.

6	The metal lead reacts with warm dilute nitric acid to produce lead(II) nitrate,
	nitrogen monoxide and water according to the following equation.

$$3Pb(s) + 8HNO_3(aq) \longrightarrow 3Pb(NO_3)_2(aq) + 2NO(g) + 4H_2O(l)$$

6 (a)	In an experiment, an 8.14 g sample of lead reacted completely with a 2.00 mol dm ⁻³
	solution of nitric acid.

Column of Thing dolar
Calculate the volume, in dm ³ , of nitric acid required for complete reaction. Give your answer to 3 significant figures.
(3 marks)
(Extra space)

6 (b)	In a second experiment, the nitrogen monoxide gas produced in the reaction occupied $638\mathrm{cm^3}$ at 101 kPa and 298 K. Calculate the amount, in moles, of NO gas produced. (The gas constant $R=8.31\mathrm{J~K^{-1}~mol^{-1}})$
	(3 marks)
	(Extra space)
6 (c)	When lead(II) nitrate is heated it decomposes to form lead(II) oxide, nitrogen dioxide and oxygen.
6 (c) (i)	Balance the following equation that shows this thermal decomposition.
	Pb(NO ₃) ₂ (s) \longrightarrow PbO(s) +NO ₂ (g) +O ₂ (g) (1 mark)
6 (c) (ii)	Suggest one reason why the yield of nitrogen dioxide formed during this reaction is often less than expected.
	(1 mark)
6 (c) (iii)	Suggest one reason why it is difficult to obtain a pure sample of nitrogen dioxide from this reaction.
	(1 mark)

Turn over ▶

Section B

		Answer all questions	in the spa	aces provided.	
5		ed to make nitric acid of soccur in this process		by the Ostwald Process.	
	Reaction 1	$4NH_3(g) + 5O_2(g)$	\longrightarrow	4NO(g) + 6H2O(g)	
	Reaction 2	$2NO(g) + O_2(g)$	\longrightarrow	2NO ₂ (g)	
	Reaction 3	$3NO_2(g) + H_2O(I)$	\longrightarrow	2HNO ₃ (aq) + NO(g)	
5 (a)	In one production 4.31 m ³ at 25 °C	on run, the gases form C and 100 kPa.	ned in Re	eaction 1 occupied a total volume of	
	Give your answ	mount, in moles, of Nover to 3 significant figure ant $R = 8.31 \mathrm{J}\mathrm{K}^{-1}$ mol	res.	ced.	
					•
				(4 marks)	
	(Extra space) .			(+ marks,	

5 (b) 5 (b) (i)	In another production run, $3.00\mathrm{kg}$ of ammonia gas were used in Reaction 1 and all of the NO gas produced was used to make NO ₂ gas in Reaction 2. Calculate the amount, in moles, of ammonia in $3.00\mathrm{kg}$.
	(2 marks)
5 (b) (ii)	Calculate the mass of NO ₂ formed from 3.00 kg of ammonia in Reaction 2 assuming an 80.0% yield. Give your answer in kilograms. (If you have been unable to calculate an answer for part (b) (i) , you may assume a value of 163 mol. This is not the correct answer.)
	(3 marks) (Extra space)
	Question 5 continues on the next page

Turn over ▶

5 (c)	Consider Reaction 3	in this process.		
	3NO ₂ (9	g) + $H_2O(I)$ \longrightarrow	2HNO ₃ (aq) + NO(g)	
		ntration of nitric acid proceeds of the colution is made up to 2	roduced when 0.543mol of NO_2 250cm^3 .	is reacted
	(Extra space)			(2 marks)
5 (d)	Suggest why a leak pollution.	of NO ₂ gas from the C	stwald Process will cause atmos	pheric
				(1 mark)
5 (e)	Give one reason wh	y excess air is used in	the Ostwald Process.	
				(1 mark)
5 (f)	Ammonia reacts wit	h nitric acid as shown i	n this equation.	
		NH ₃ + HNO ₃ —	→ NH ₄ NO ₃	
	Deduce the type of	reaction occurring.		
				(1 mark) 14

Created Using StudySpace: www.tutorzone.co.uk

outside the box

6	Phosphoric(V) acid (H ₃ PO ₄) is an important chemical. It can be made by two methods. The first method is a two-step process.
6 (a)	In the first step of the first method, phosphorus is burned in air at 500 °C to produce gaseous phosphorus(V) oxide.
	$P_4(s) + 5O_2(g) \longrightarrow P_4O_{10}(g)$
	220 g of phosphorus were reacted with an excess of air.
	Calculate the volume, in m^3 , of gaseous phosphorus(V) oxide produced at a pressure of 101 kPa and a temperature of 500 °C. The gas constant $R = 8.31$ J K ⁻¹ mol ⁻¹ Give your answer to 3 significant figures.
	[4 marks]
6 (b)	In the second step of the first method, phosphorus(V) oxide reacts with water to form phosphoric(V) acid.
	$P_4O_{10}(s) + 6H_2O(l) \longrightarrow 4H_3PO_4(aq)$
	Calculate the mass of phosphorus(V) oxide required to produce 3.00 m ³ of 5.00 mol dm ⁻³ phosphoric(V) acid solution.
	[3 marks]

outside the

In the second method to produce phosphoric(V) acid, 3.50 kg of Ca ₃ (PO ₄) ₂ are added to an excess of aqueous sulfuric acid. Ca ₃ (PO ₄) ₂ (s) + 3H ₂ SO ₄ (aq) \longrightarrow 2H ₃ PO ₄ (aq) + 3CaSO ₄ (s) 1.09 kg of phosphoric(V) acid are produced. Calculate the percentage yield of phosphoric(V) acid. [4 marks]	
1.09 kg of phosphoric(V) acid are produced. Calculate the percentage yield of phosphoric(V) acid. [4 marks] Explain whether the first method or the second method of production of phosphoric acid has the higher atom economy. You are not required to do a calculation.	In the second method to produce phosphoric(V) acid, 3.50 kg of $\text{Ca}_3(\text{PO}_4)_2$ are added to an excess of aqueous sulfuric acid.
Explain whether the first method or the second method of production of phosphoric acid has the higher atom economy. You are not required to do a calculation.	$Ca_3(PO_4)_2(s) + 3H_2SO_4(aq) \longrightarrow 2H_3PO_4(aq) + 3CaSO_4(s)$
Explain whether the first method or the second method of production of phosphoric acid has the higher atom economy. You are not required to do a calculation.	1.09 kg of phosphoric(V) acid are produced.
has the higher atom economy. You are not required to do a calculation.	
has the higher atom economy. You are not required to do a calculation.	
has the higher atom economy. You are not required to do a calculation.	
has the higher atom economy. You are not required to do a calculation.	
has the higher atom economy. You are not required to do a calculation.	
has the higher atom economy. You are not required to do a calculation.	
has the higher atom economy. You are not required to do a calculation.	
	has the higher atom economy.
	has the higher atom economy. You are not required to do a calculation.
	has the higher atom economy. You are not required to do a calculation.
	has the higher atom economy. You are not required to do a calculation.
	has the higher atom economy. You are not required to do a calculation.

END OF QUESTIONS

Answer all the questions.

1	Tin mining was common practice on Dartmoor in pre-Roman times. Most of the tin extracted was
	mixed with copper to produce bronze.

(a) The tab	e below shows	the sub-atomic	particles of	an isotop	e of tin
-------------	---------------	----------------	--------------	-----------	----------

isotope	protons	neutrons	electrons
¹¹⁸ Sn			

		¹¹⁸ Sn				
	(i)	Complete the table				[1]
	(ii)	In terms of sub-ato	mic particles, how	would atoms of 1	²⁰ Sn differ from at	oms of ¹¹⁸ Sn?
						[1]
(b)	The	relative atomic mas	s of tin is 118.7.			
	Defi	ne the term <i>relative</i>	atomic mass.			
						[3]
(c)	A br	onze-age shield fou	nd on Dartmoor c	ontained 2.08 kg o	of tin.	
		culate the number of your answer to thr				

Created Using StudySpace: www.tutorzone.co.uk

Calculate the empirical formula of this oxide. You must show your working.
answer =[2]
[Total: 9]

(d) Tin ore, known as cassiterite, contains an oxide of tin. This oxide contains 78.8% tin by mass.

© OCR 2010 Turn over