Qu	estio	n Expected Answers	Marks	Additional Guidance
2	а	$BrO_3^- + 5Br^- + 6H^+ \longrightarrow 3Br_2 + 3H_2O \checkmark$	1	ALLOW multiples
	b	graph: Straight/diagonal line through origin OR 0,0 AND 1st order with respect to BrO₃ ✓	1	ANNOTATIONS MUST BE USED Both explanation and 1st order required for mark DO NOT ALLOW diagonal line OR straight line OR constant gradient on its own (no mention of origin OR 0,0) ALLOW 'As BrO ₃ ⁻ doubles, rate doubles' AND 1st order ALLOW rate is proportional to concentration AND 1st order
		initial rates data: When [Br] is doubled, rate × 2 ✓ 1st order with respect to Br ✓	4	Mark order and explanation independently Mark order first, then explanation
		When $[H^{+}] \times 2$, rate $\times 4 (2^{2}) \checkmark$ 2nd order with respect to $H^{+} \checkmark$ Rate equation rate = k [BrO ₃ ⁻] [Br ⁻] $[H^{+}]^{2} \checkmark$	1	ALLOW ECF from candidate's orders above

Question	Expected Answers	Marks	Additional Guidance
	Calculation of rate constant (3 marks)	3	ANNOTATIONS MUST BE USED
	$k = \frac{\text{rate}}{[\text{BrO}_3^-][\text{Br}^-][\text{H}^+]^2}$		Calculation can be from any of the experimental runs – they all give the same value of <i>k</i>
	OR $\frac{1.19 \times 10^{-5}}{(5.0 \times 10^{-2})(1.5 \times 10^{-1})(3.1 \times 10^{-1})^2} \checkmark$ $= 1.7 \times 10^{-2} \text{ OR } 1.65 \times 10^{-2} \checkmark \text{ dm}^9 \text{ mol}^{-3} \text{ s}^{-1} \checkmark$		ALLOW mol ⁻³ dm ⁹ s ⁻¹ ALLOW 1.6510579 \times 10 ⁻² and correct rounding to 1.7 \times 10 ⁻² Correct numerical answer subsumes previous marking point DO NOT ALLOW fraction: $\frac{238}{14415}$
			ALLOW ECF from incorrect rate equation. Examples are given below for 1st line of initial rates data. IF other rows have been used, then calculate the rate constant from data chosen. Example 1: 1st order with respect to H ⁺ rate = k [BrO ₃] [Br] [H ⁺] $k = \frac{\text{rate}}{[\text{BrO_3}][\text{Br}][\text{H}^+]}$ OR $\frac{1.19 \times 10^{-5}}{(5.0 \times 10^{-2})(1.5 \times 10^{-1})(3.1 \times 10^{-1})} \checkmark$ = 5.1×10^{-3} OR 5.12×10^{-3} \checkmark dm ⁶ mol ⁻² s ⁻¹ \checkmark ALLOW $5.11827957 \times 10^{-3}$ and correct rounding to 5.1×10^{-3}
			Example 2: Zero order with respect to BrO ₃ ⁻ rate = k [Br ⁻] [H ⁺] ² $k = \frac{\text{rate}}{[\text{Br}^-](\text{H}^+)^2}$ OR $\frac{119 \times 10^{-5}}{(1.5 \times 10^{-1})(3.1 \times 10^{-1})^2} \checkmark$ = 8.3×10^{-4} OR 8.26×10^{-4} \checkmark dm ⁶ mol ⁻² s ⁻¹ \checkmark ALLOW $8.255289629 \times 10^{-4}$ and correct rounding to 8.3×10^{-4}
	Total	10	

F325 Mark Scheme January 2011

	Ques	tion	Answer	Mark	Guidance
1	(a)		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 8.3×10^4 OR 83333 award 2 marks THEN IF units are dm ⁶ mol ⁻² s ⁻¹ , award 1 further mark $k = \frac{rate}{[\text{H}_2(\text{g})][\text{NO}(\text{g})]^2}$ OR $\frac{3.6 \times 10^{-2}}{(1.2 \times 10^{-2}) \times (6.0 \times 10^{-3})^2}$		ALLOW 1 mark for 8.3 × 10 ^x with no working (power of 10 is error)
			= 8.3 × 10 ⁴ OR 83000 OR 83333 ✓	2	ALLOW 2 SF up to calculator value of 8.333333333 × 10 ⁴ correctly rounded ALLOW ECF for calculated answer from incorrectly rearranged <i>k</i> expression but not for units
			units: dm ⁶ mol ⁻² s ⁻¹ ✓	1	(Marked independently see below) ALLOW dm ⁶ , mol ⁻² and s ⁻¹ in any order, eg mol ⁻² dm ⁶ s ⁻¹ DO NOT ALLOW other units (Rate equation supplied on paper – not derived from data)
	(b)	(i)	effect on rate × 2 ✓	1	ALLOW 'doubles' OR <i>rate</i> = 7.2 x 10 ⁻² (mol dm ⁻³ s ⁻¹)
		(ii)	effect on rate × ¼ OR x 0.25 ✓	1	ALLOW 'a quarter' OR decrease by 1 4 OR decrease by 0.25 OR rate decreases by 4 OR decrease by 75% OR $rate = 0.9 \times 10^{-2} \text{ (mol dm}^{-3} \text{ s}^{-1}\text{)}$ DO NOT ALLOW just 0.5^2 of rate OR rate decreases by 2^2
		(iii)	effect on rate × 64 ✓	1	ALLOW rate = 2.3(04) (mol dm ⁻³ s ⁻¹) DO NOT ALLOW just 'increases by 4 and then by 16 / 4 ² OR increases by 4 ³

	Ques	tion	Answer	Mark	Guidance
1	1 (c) (i)		(initial) rate increases AND more frequent collisions OR more collisions per second/time ✓		BOTH points required for mark ALLOW rate increases AND concentration increases For concentration increases, ALLOW particles closer together OR less space between particles DO NOT ALLOW just more collisions OR collisions more likely
		(ii)	rate constant does not change ✓	1	
	(d)		step 1: $H_2(g) + 2 \text{ NO}(g) \longrightarrow N_2O(g) + H_2O(g)$ LHS of step one \checkmark step 2: $H_2(g) + N_2O(g) \longrightarrow N_2(g) + H_2O(g)$ rest of equations for step 1 AND step 2 \checkmark	2	For 'rest of equations', This mark can only be awarded if 1st mark can be awarded
			Total	10	

F325 Mark Scheme January 2012

Question		Expected answers		Additional guidance		
а		graph:		ANNOTATIONS MUST BE USED		
		Rate does not change with concentration AND zero-order with respect to I₂ ✓		ALLOW (straight) line with zero gradient AND zero-order ALLOW horizontal line AND zero-order IGNORE just 'constant line' OR just 'straight line'		
		initial rates data: Mark independently		also fits 1st order		
		When [(CH ₃) ₂ CO] × 2, rate × 2 (2 ¹) ✓ 1st order with respect to (CH ₃) ₂ CO ✓		CARE with comparisons in opposite direction ALLOW [(CH ₃) ₂ CO] × 0.5, rate × 0.5 (0.5 ¹)		
		When [HCI] x 2.5, rate × 2.5 ✓ 1st order with respect to HCI ✓		ALLOW [HCI] × 0.4, rate × 0.4 (0.4 ¹) ALLOW H ⁺ for HCI		
				CARE: Comparison of Experiments 1 and 3 may be validespite BOTH concentrations changing		
		Rate equation and rate constant:		ALLOW ECF from incorrect orders In rate equation, square brackets are required		
		rate = $k[(CH_3)_2CO(aq)][HCI(aq)] \checkmark$ rate rate OP		rate = $k[(CH_3)_2CO(aq)][HCI(aq)][I_2(aq)]^0$ ALLOW H ⁺ for HCI		
				IGNORE state symbols, even if wrong		
		= $7(.00) \times 10^{-9}$ OR $0.00007(00)$ \checkmark units: dm³ mol ⁻¹ s ⁻¹ \checkmark	9	ALLOW ECF for units 'correct' for incorrect expression used to calculate <i>k</i> , <i>e.g. upside down or wrong orders</i>		
				$\frac{[(CH_3)_2CO(aq)][H^+(aq)]}{rate} \times \text{units: mol s dm}^{-3} \checkmark$		
	1		graph: Rate does not change with concentration AND zero-order with respect to $l_2 \checkmark$ initial rates data: Mark independently When $[(CH_3)_2CO] \times 2$, rate $\times 2 (2^1) \checkmark$ 1st order with respect to $(CH_3)_2CO \checkmark$ When $[HCI] \times 2.5$, rate $\times 2.5 \checkmark$ 1st order with respect to $HCI \checkmark$ Rate equation and rate constant: rate = $k[(CH_3)_2CO(aq)][HCI(aq)] \checkmark$ $k = \frac{rate}{[(CH_3)_2CO(aq)][HCI(aq)]} OR$ $\frac{2.10 \times 10^{-9}}{(1.50 \times 10^{-3}) \times (2.00 \times 10^{-2})} \checkmark$ $= 7(.00) \times 10^{-5} OR 0.00007(00) \checkmark$	graph: Rate does not change with concentration AND zero-order with respect to $I_2 \checkmark$ initial rates data: Mark independently When $[(CH_3)_2CO] \times 2$, rate $\times 2 (2^1) \checkmark$ 1st order with respect to $(CH_3)_2CO \checkmark$ When $[HCI] \times 2.5$, rate $\times 2.5 \checkmark$ 1st order with respect to $HCI \checkmark$ Rate equation and rate constant: $rate = k[(CH_3)_2CO(aq)][HCI(aq)] \checkmark$ $k = \frac{rate}{[(CH_3)_2CO(aq)][HCI(aq)]} OR$ $\frac{2.10 \times 10^{-9}}{(1.50 \times 10^{-3}) \times (2.00 \times 10^{-2})} \checkmark$ $= 7(.00) \times 10^{-5} OR 0.00007(00) \checkmark$		

Qu	esti	on	Expected answers	Marks	Additional guidance
1	b		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		State symbols NOT required
				2	2nd mark can ONLY be awarded provided that 1st mark has been awarded step 1 AND step 2 add up to the overall equation.
					e.g. ALLOW \longrightarrow $H_2ICI(g)$
					$ step 2: H_2 C (g) + C (g) \longrightarrow 2HC (g) + I_2(g) $
					In step 2 , ALLOW inclusion of extra species on both sides of the equation only if they cancel, e.g. $HI(g) + HCI(g) + ICI(g) \longrightarrow 2HCI(g) + I_2(g)$
			Total	11	

F325 Mark Scheme June 2015

Question	Answer	Marks		Guidance			
Question 2 (a)	NOTE: First 3 marks are ONLY available from an expression using [NO] ² Units are marked independently Using values ON THE CURVE in CORRECT expression 1 mark Use of any two correct values for rate and [NO] from graph e.g. for 5.0×10^{-4} and 4.2×10^{-4} , $k = \frac{4.2 \times 10^{-4}}{(2.0 \times 10^{-2}) \times (5.0 \times 10^{-4})^2}$ OR $4.2 \times 10^{-4} = k(2.0 \times 10^{-2}) \times (5.0 \times 10^{-4})^2 \checkmark$ Calculation of k 2 marks FOR 1 MARK k calculated correctly from values obtained from graph BUT NOT in standard form AND/OR more than 2 SF e.g. $k = \frac{6.0 \times 10^{-4}}{(2.0 \times 10^{-2}) \times (6.0 \times 10^{-4})^2} = 83333.33 \checkmark$ OR FOR 2 MARKS k calculated correctly from values obtained from graph AND in standard form AND TO 2 SF e.g. $k = 83333.33$ gives $8.3 \times 10^4 \times 10^{-4}$ UNITS FOR 1 MARK: $dm^6 mol^{-2} s^{-1} \checkmark$		the graph, The [NO] bel For these [No] 1.0×10^{-4} 2.0×10^{-4} 3.0×10^{-4} 4.0×10^{-4} 5.0×10^{-4} 6.0×10^{-4} IF OTHER V.	Note: rate and [NO] are any correct pair of readings from the graph, The [NO] below are the most commonly seen. For these [NO] values, these are the ONLY rates allowed		en. 7 rates allowed k	
		4	SPECIAL C/ from ONLY 1. Powers of 2. [H ₂] ² [NO] u 3. Any value	ASES that ALLOV ONE of the follow 10 incorrect or at used instead of [H within ±0.2 of actu	N ECF for control of the sent in initial of the sent initial o	alculation of k ks) I k expression om graph	

Q	uesti	ion	Answer	Marks	Guidance
2	(b)	(i)	One straight upward line AND starting at 0,0 ✓ 2nd straight upward line starting at 0,0 and steeper AND Steeper line labelled H OR less steep line labelled L ✓	2	ALLOW 1 mark for two upward sloping curves starting at origin AND upper curve labelled H and lower curve labelled L NOTE: ALLOW some leeway for lines starting from origin ALLOW straight line not drawn with ruler, i.e. is a straight line rather than a curve ALLOW similar labelling as long as it is clear which line is which
2	(b)	(ii)	increases ✓	1	
2	(c)		MARK INDEPENDENTLY H ₂ (g) Downward curve Half life is constant Half life is constant Half life Ha	2	ALLOW curve touching y axis ALLOW curve touching x axis ALLOW Two half lives are the same IGNORE 'regular' half life (not necessarily the same)

F325 Mark Scheme June 2015

Q	Question		Answer	Marks	Guidance
2	(d)	(i)	$H_2 + N_2O \rightarrow N_2 + H_2O \checkmark$	1	ONLY correct answer DO NOT ALLOW multiples
2	(d)	(ii)	Steps 1 AND Step 2 together give 2NO + H₂ ✓	1	ALLOW Step 1 AND Step 2 together give species in same ratio as in rate equation ALLOW rate-determining step/slow step for Step 2 ALLOW H ₂ reacts with N ₂ O ₂ which is formed from 2NO NOTE: The response must link Step 1 with Step 2 Steps can be referenced from the species in each step
			Total	11	