

Percentage	
Grade	

A Level Chemistry

Rate Equations

Duration: 50 min

Total Marks:

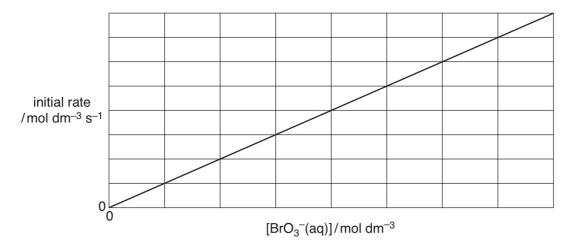
Information for Candidates:

- •Use black or blue ink. HB pencil may be used for graphs and diagrams only.
- Answer all the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Write your answer to each question in the space provided. If additional paper is used, the question number(s) must be clearly shown
- The number of marks is given in brackets [] at the end of each question or part question.
- You may use an electronic calculator.
- You are advised to show all the steps in any calculations.

Do not write in this table					
Question	Mark				
TOTAL					

Δ

2 In the presence of acid, H⁺(aq), aqueous bromate(V) ions, BrO₃⁻(aq), react with aqueous bromide ions, Br⁻(aq), to produce bromine, Br₂(aq).


A student carried out an investigation into the kinetics of this reaction.

(a) Balance the ionic equation for this reaction.

$$BrO_3^- +Br^- +H^+ \longrightarrowBr_2 +H_2O$$
[1]

(b) The student investigated how different concentrations of BrO₃⁻(aq) affect the initial rate of the reaction.

A graph of initial rate against [BrO₃⁻(aq)] is shown below.

The student then investigated how different concentrations of $Br^-(aq)$ and $H^+(aq)$ affect the initial rate of the reaction.

The results are shown below.

[BrO ₃ ⁻ (aq)] /moldm ⁻³	[Br⁻(aq)] /moldm ⁻³	[H⁺(aq)] /moldm ⁻³	initial rate /moldm ⁻³ s ⁻¹
5.0 × 10 ⁻²	1.5×10^{-1}	3.1×10^{-1}	1.19 × 10 ⁻⁵
5.0 × 10 ⁻²	3.0 × 10 ⁻¹	3.1 × 10 ⁻¹	2.38 × 10 ⁻⁵
5.0 × 10 ⁻²	1.5 × 10 ⁻¹	6.2 x 10 ⁻¹	4.76 × 10 ⁻⁵

[Total: 10]

- Using the results from the student's experiments, what conclusions can be drawn about the kinetics of this reaction? Justify your reasoning.
- Calculate the rate constant for this reaction, including the units.

In your answer you should make clear how your conclusions fit with the experimental results.
[9]

© OCR 2010 Turn over

Answer all the questions.

1	Hydrogen, H ₂ ,	reacts with	nitrogen	monoxide,	NO,	as shown	in the	equation	below.
---	----------------------------	-------------	----------	-----------	-----	----------	--------	----------	--------

$$2H_2(g) + 2NO(g) \rightarrow N_2(g) + 2H_2O(g)$$

A chemist carries out a series of experiments and determines the rate equation for this reaction:

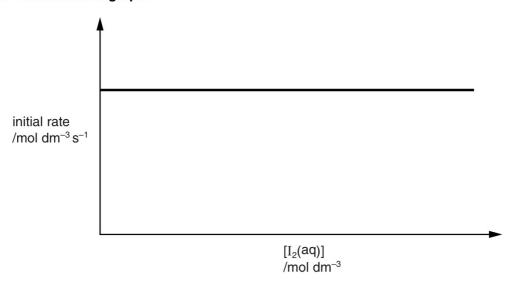
rate =
$$k[H_2(g)][NO(g)]^2$$

- (a) In one of the experiments, the chemist reacts together:
 - $\begin{array}{l} 1.2\times 10^{-2} \mathrm{mol\,dm^{-3}H_2(g)} \\ 6.0\times 10^{-3} \mathrm{mol\,dm^{-3}NO(g)} \end{array}$

The initial rate of this reaction is $3.6 \times 10^{-2} \, \text{mol dm}^{-3} \, \text{s}^{-1}$.

Calculate the rate constant, *k*, for this reaction. State the units, if any.

		<i>k</i> = units units	[3]
(b)		edict what would happen to the initial rate of reaction for the following characteristics.	anges in
	(i)	The concentration of $H_2(g)$ is doubled.	F41
	<i>(</i>)	T	[1]
	(ii)	The concentration of NO(g) is halved.	[4]
	(iii)	The concentrations of $H_2(g)$ and $NO(g)$ are both increased by four times.	[1]
			F43


(c)		chemist carries out the reaction between hydrogen and nitrogen monoxide at a higher sure.			
	(i)	Explain, with a reason, what happens to the initial rate of reaction.			
		[11]			
	<i>(</i> 11)	[1]			
	(ii)	State what happens to the rate constant.			
		[1]			
(d)		s overall reaction between hydrogen and nitrogen monoxide takes place by a two-step chanism. The first step is much slower than the second step.			
	Sug	gest a possible two-step mechanism for the overall reaction.			
	step 1:				
	step	2:[2]			
		[Total: 10]			

Answer all the questions.

1 A student investigates the reaction between iodine, I_2 , and propanone, $(CH_3)_2CO$, in the presence of aqueous hydrochloric acid, HCl(aq).

The results of the investigation are shown below.

Rate-concentration graph

Results of initial rates experiments

experiment	[(CH ₃) ₂ CO(aq)] / mol dm ⁻³	[HC <i>l</i> (aq)] / mol dm ⁻³	initial rate / mol dm ⁻³ s ⁻¹
1	1.50×10^{-3}	2.00×10^{-2}	2.10×10^{-9}
2	3.00×10^{-3}	2.00×10^{-2}	4.20×10^{-9}
3	3.00×10^{-3}	5.00×10^{-2}	1.05×10^{-8}

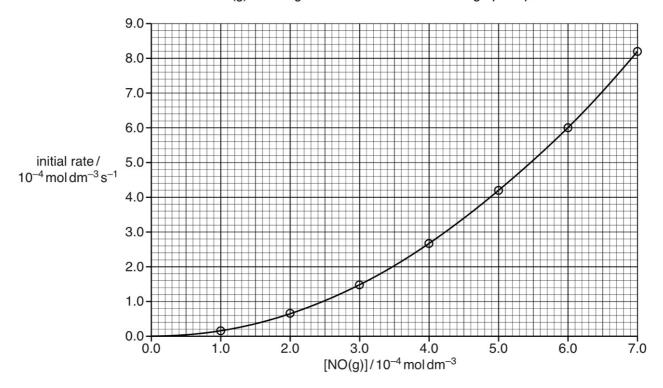
(a)	Determine the orders with respect to $\rm I_2$, $\rm (CH_3)_2CO$ and $\rm HC\it l$, the rate equation and the rate constant for the reaction.
	Explain all of your reasoning.

© OCR 2012

[9]
The student then investigates the reaction of hydrogen, $\rm H_2$, and iodine monochloride, IC $\it l$.
The equation for this reaction is shown below.
$H_2(g) + 2ICl(g) \longrightarrow 2HCl(g) + I_2(g)$
The rate equation for this reaction is shown below.
$rate = k[H_2(g)] [ICl(g)]$
Predict a possible two-step mechanism for this reaction. The first step should be the rate-determining step.
step 1
step 2[2]
[Total: 11]

(b)

© OCR 2012 Turn over


2 Hydrogen, H₂, reacts with nitrogen monoxide, NO, as shown below:

$$2H_2(g) + 2NO(g) \longrightarrow N_2(g) + 2H_2O(g)$$

(a) The rate equation for this reaction is:

$$rate = k[H_2(g)][NO(g)]^2$$

The concentration of NO(g) is changed and a rate-concentration graph is plotted.

The chemist uses $H_2(g)$ of concentration $2.0 \times 10^{-2} \, \text{mol dm}^{-3}$.

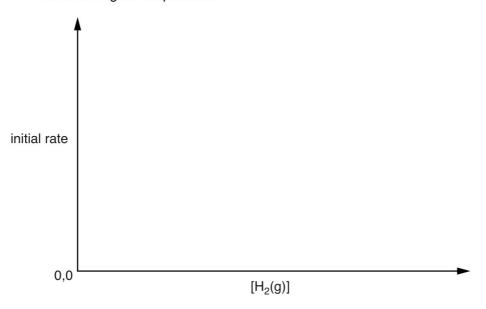
Using values from the graph, calculate the rate constant, k, for this reaction.

Give your answer to two significant figures and in standard form.

Show your working.

k =					
	L	· —	unite	Г	4

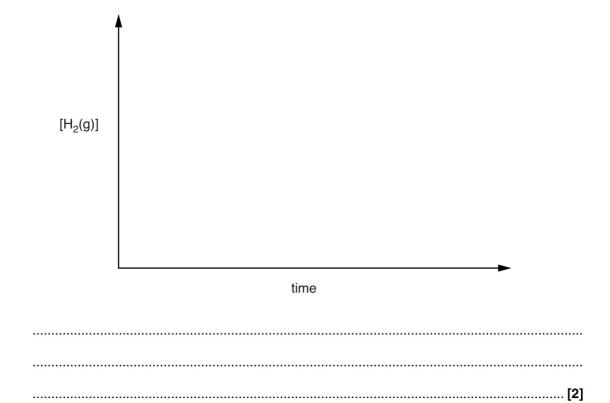
[2]


(b) A chemist investigates the effect of changing the concentration of H₂(g) on the initial reaction rate at two different temperatures.

The reaction is first order with respect to $H_2(g)$.

(i) Using the axes below, sketch two graphs of the results.

Label the graphs as follows:


- L for the lower temperature
- **H** for the higher temperature.

(ii) State the effect of the higher temperature on the rate constant, k.

© OCR 2015

- (c) The reaction can also be shown as being first order with respect to $H_2(g)$ by continuous monitoring of $[H_2(g)]$ during the course of the reaction.
 - Using the axes below, sketch a graph to show the results.
 - State how you would use the graph to show this first order relationship for H₂(g).

(d) The chemist proposes a three-step mechanism for the reaction:

$$2H_2(g) + 2NO(g) \rightarrow N_2(g) + 2H_2O(g)$$

(i) On the dotted line below, write the equation for step 3.

step 1: $2NO \rightarrow N_2O_2$ fast

step 2: $H_2 + N_2O_2 \rightarrow N_2O + H_2O$ slow

step 3: fast [1]

(ii) Explain why this mechanism is consistent with the rate equation $rate = k[H_2(g)][NO(g)]^2$.

.....[1]

[Total: 11]